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Abstract: The automotive, biomedical, and aerospace industries are attracted towards magnesium-
based alloys and composites because they are among the lightest structural materials available and
have significantly enhanced mechanical and physical characteristics. When it comes to precision
and functional requirements, such materials need to be machined. The aim of this study was to
investigate the machinability behavior of Mg/B4C metal matrix composite (MMC) through end-
milling experiments. Different deformation behaviors of the composite were studied by varying the
volume percentage of B4C reinforcement between 5% and 10%. Using a milling tool dynamometer,
the cutting forces on the tool were examined for various milling parameters. Moreover, Talysurf
roughness was used to analyze the machined surface under each cutting parameter, and scanning
electron microscopy was used to study the chips produced under different cutting conditions.

Keywords: Mg-B4C composite; milling; cutting force; surface roughness; chip morphology

1. Introduction

The search for new composite materials arises from the need to attain highly specific
properties that are tailored to particular tasks. Magnesium and its alloys represent a topic
of considerable interest for both scientific research and commercial applications. The uti-
lization of magnesium alloys is constrained due to their inadequate creep resistance at
high temperatures, low modulus and strength, and wear resistance. Therefore, reinforce-
ments are required to enhance the properties of the base metal. These properties make
magnesium-based composites important for aircraft frames, panels, suspension parts in
automotives, lightweight armor, heat sinks in electronics, and golf club heads in sports.

Machinability is often unavoidable despite the near net shape of composite materials,
due to their assembly requirements. However, a major challenge in machining is the
presence of particulate inclusions in the material, leading to rapid tool wear and poor
surface quality. Studies have shown that the cutting speed has a minimal effect on the 3D
roughness, while the cutting depth and feed rate have the greatest impact. Therefore, to
achieve a smoother machined surface, it is important to pay more attention to the feed rate
and cutting depth. Input parameters that need to be considered include the micro hole
diameter, pitch distance, and depth, while the outcomes to be measured include the power
consumed, the wear rate of the tool, and the hole surface quality [1,2]. While studying the
effects of an increasing SiC particle percentage on the cutting forces, it was found that there
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was a slight increase in cutting forces, but no significant impact from the increased SiC
particle percentage [3].

Habrat et al. [4] investigated how laser heating affects the cutting forces and mi-
crostructure. They concluded that the process parameters have a significant impact on the
machining forces and emphasized the importance of the work specimen diameter. A study
on the surface roughness of the TiB2/7075 composite revealed that unstable cutting caused
the roughness of the 7075 alloy to be the largest, while the roughness of the composite was
minimal [5]. Furthermore, it was confirmed that speed is the most influential parameter
for roughness, followed by depth, and feed has a lesser impact [6]. Analysis of the chip
microstructure showed that gross fracture propagation occurred at the free surface, and
variations in the shear bands occurred at different cutting speeds [7–9].

When milling the Mg AZ31 alloy, the main cutting forces fell as the machining speed
rose but increased as the feed rose [10]. It was observed that increasing the depth resulted
in a higher cutting force and the maximum profile peak–valley height for the roughness
parameter [11]. While previous research has focused on the machinability of Al Mg-
based metal matrix composites (MMCs) offer significant advantages for automobile and
biomedical applications, and thus their machining behavior needs to be investigated. This
current study aims to evaluate the milling of Mg-B4C metal matrix composites with two
different volume percentages (5% and 10%) and a varying milling speed (v) and feed (f) to
understand the material’s deformation behavior. To analyze the different conditions, the
cutting force and surface roughness were measured using a dynamometer and profilometer,
respectively. Additionally, scanning electron microscopy was used to study the chip
morphology for selected conditions.

2. Materials and Methods

The workpiece was fabricated using a stir-casting process, followed by squeeze casting
as a secondary process to enhance the distribution of reinforcements and reduce porosity.
Firstly, the Mg ingot was melted in a crucible furnace. The furnace temperature was
monitored and maintained closely around 700 ◦C. Then, B4C particulates were preheated
and stirred at a constant speed of 750 rpm using a stirrer. The resulting mixture was poured
into a die and then squeezed with a load of 40 tonne. After fabrication, the workpieces
Mg/B4C (5% and 10% vol.) were rough-machined and loaded onto a milling machine,
as shown in Figure 1. The final workpiece size was 100 × 100 × 10 mm. These volume
levels of reinforcement enhance the mechanical properties for their applications, like a high
hardness and modulus of elasticity, while also maintaining practical manufacturability [12].
The experimental work utilized an end mill cutter with an 8 mm diameter and 2 flutes.
The cutting force was measured using a milling tool dynamometer with data acquisition
software. The machined surface was measured for each cutting condition using a Talysurf
Profilometer (Mitutoyo SJ210), and chips were collected and analyzed using a scanning
electron microscope for selected conditions.
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3. Results and Discussion
3.1. Analysis of Cutting Force versus Cutting Speed at Varying Feeds

The cutting forces for the 5% and 10% Mg/B4C MMCs were obtained using a strain-
gauge-based dynamometer for different combinations of ‘v’ at varying ‘f’, as depicted in
Figure 2a–c. The cutting force was consistently higher for the vol. 10% MMC compared to
the vol. 5% MMC across all cutting conditions due to the hardness of the composites [13].
This difference may be attributed to the higher agglomeration of B4C precipitates on the
cast workpiece in the vol. 10% material. An overall gradual increase in cutting force was
observed with increasing ‘v’ across different ‘f’. However, at a ‘v’ of 30.66 m/min and
an ‘f’ of 176 mm/min, the cutting force for the vol. 5% material decreased marginally. In
contrast, for the vol. 10% material, the cutting force increased gradually at an ‘f’ of 80
and 176 mm/min. However, the force decreased at an ‘f’ of 134 mm/min when the ‘v’
was increased.
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(c) 176 mm/min.

3.2. Analysis of Cutting Force versus Feed at Varying Cutting Speeds

The cutting force for different ‘f’ values at varying ‘v’ values for vol. 5% and 10% materials
are shown in Figure 3a–c. The cutting force gradually rose with an increase in ‘f’ for vol.
10% material across all ‘v’ values. For vol. 5%, the force increased with an increase in ‘f’ at
‘v’ values of 22.62 and 30.66 m/min. However, at a ‘v’ value of 16.58 m/min, the force was
higher at an ‘f’ value of 134 mm/min, whereas it decreased at an ‘f’ value of 176 mm/min.
Overall, the composition percentage had a greater tendency to affect the cutting forces
and, at a higher volume, the consistent behavior observed, attributed to the tool wear, was
more pronounced.
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3.3. Chip Morphology

The chip was formed at a cutting parameter of ‘v’ 16.58 m/min and ‘f’ 176 mm/min,
as shown in Figure 4A–D for vol. 5% and 10%. Figure 4A shows that the tear propagated
more from the free end, whereas a limited tear was obtained at vol. 10%, as shown in
Figure 4B. The observations of closure in Figure 4C show that a regular pattern comprising
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a sawtooth profile was obtained at the free surface [14]. However, vol. 10% showed an
irregular sawtooth pattern due to a higher volume of particulates.
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The chip morphology obtained for the cutting parameter ‘v’ 30.66 m/min and ‘f’
80 mm/min is shown in Figure 5A–E for vol. 5% and 10%. In Figure 5A, a straight and
regular chip pattern formed at vol. 5%, whereas, for the same condition, irregular and
curl-shaped chip formed for vol. 10%, as shown in Figure 5B. Figure 5C,D show the free-
end views of chips under their respective conditions. As we can observe, the chip with
5% reinforcement has a larger number of segments (i.e., a narrower lamella width), whereas
the chip with 10% reinforcement has fewer segments (i.e., a wider lamella width). This is
because the cutting force has a direct relationship with chip formation. As the vol. % of
reinforcement rose, the force obtained during machining also increased significantly, and
the roughness measured after machining also increased. Therefore, as the reinforcement
percentage increases, the cutting force rises, leading to a rise in the segmentation ratio.
Hence, the number of segments is more in the 5% chip and less in the 10% chip. Figure 5
E,F provide clear evidence of this. The increase in cutting force and segmentation ratio
also affects the free side and rake side of the chip. Linear stacks of striations are observed
on the free end of the 5% chip (Figure 5C), whereas curved striations are observed on
the 10% reinforcement chip (Figure 5D). A visible tear is observed on the rake side of the
10% chip, whereas no visible tear is observed on the 5% chip. In all comparisons of the free
side between the 5% and 10% chips (Figure 5C,D), it is observed that the fracture on the
free side is limited for the 5% chip, whereas it is more pronounced for the 10% chip.
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3.4. Analysis of Surface Roughness versus Feed at Varying Cutting Speeds

The surface roughness of the vol. 5% and 10% materials at varying ‘v’ and ‘f’ values
are shown in Figure 6a–c, as measured by the Talysurf profilometer. The roughness values
for vol. 10% were generally higher than for vol. 5% across all conditions, although
at ‘f’ values of 134 mm/min and ‘v’ values of 22.62 m/min, as well as at ‘f’ values of
176 mm/min and ‘v’ values of 16.58 m/min, the roughness value was marginally reduced
compared to vol. 5%. The roughness value decreased as ‘v’ increased at ‘f’ values of 134
and 176 mm/min for vol. 5% material, but increased at the high ‘v’ value of 30.66 m/min.
For the vol. 10% material, the roughness value increased as ‘v’ increased at an ‘f’ value of
80 mm/min. However, a marginal decrease in roughness was observed when ‘v’ increased
at an ‘f’ value of 134 mm/min. The roughness value gradually increased at intermediate
‘v’ values and further decreased at the high ‘v’ value of 30.66 m/min at an ‘f’ value of
176 mm/min.
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3.5. Analysis of Surface Roughness versus Cutting Speed at Varying Feeds

The roughness values with respect to ‘f’ at varying ‘v’ are depicted in Figure 7a–c. The
roughness increases with a rise in ‘f’ at the ‘v’ values of 22.62 and 30.66 m/min. However, it
was observed that the roughness value increased at an ‘f’ value of 134 mm/min and then de-
creased to 176 mm/min for a ‘v’ value of 16.58 m/min for the vol. 5% material. Conversely,
for vol. 10%, the roughness value increased at an intermediate ‘f’ value of 134 mm/min
and decreased at the high ‘f’ value of 176 mm/min at ‘v’ 16.58 m/min. Additionally, the
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roughness value marginally decreased when ‘f’ increased at ‘v’ 22.62 m/min. Furthermore,
at ‘v’ 30.66 m/min, the roughness value marginally reduced at an intermediate ‘f’ value
of 134 mm/min and gradually increased at the ‘f’ value of 176 mm/min. Towards the
cutting direction, the material deformed plastically, and ploughing took place, which leads
to cracks and other surface defects [15].
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4. Conclusions

The present work on the milling of boron-carbide-reinforced magnesium metal ma-
trix composite prepared via the stir casting route followed by squeeze casting yields the
following conclusions:

• When comparing the cutting speeds for 5% and 10% boron-carbide-reinforced MMC, it
was found that the probability of interaction of the ceramic particles greatly influences
the cutting force;

• Irregular trends in the cutting forces were observed due to the agglomeration and
uneven distribution of particles at different locations in the lattice of the metal
matrix composite;

• In most cases, a decreasing trend for surface roughness with a rise in cutting speed
and feed was observed. The abrupt fluctuations in surface roughness can be attributed
to the uneven distribution of B4C particles;

• SEM analysis revealed that the 5% B4C-reinforced MMC chips have a greater number
of lamella structures and segmentations compared to the 10% B4C-reinforced MMC
chips. Visible tears can be observed on the rake sides of the 10% B4C-reinforced
MMC chips.
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