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Abstract: Shape Memory Alloys (SMAs) are a class of metallic alloys that have the ability to return to
their original shape after being deformed. NiTi (nickel–titanium) alloy a type of shape memory alloy
that possesses unique properties such as remembering its shape, biocompatibility, and super-elasticity.
These SMAs have the ability to deform when heated and regain their original shape when allowed to
cool. The disadvantage of a fuse is that it can only be used once. By replacing a wire that melts with a
NiTi shape memory alloy, we can turn it into a switch that opens when an excessive current (which
leads to an increase in temperature of the wire) is applied. Magnets keep the circuit closed. When the
wire heats up, the spring-shaped coil shrinks, which opens the circuit. The circuit can then be closed
manually once the problems are rectified.

Keywords: shape memory alloys (SMAs); overheating; deformation; electricity conductance analysis

1. Introduction

Shape memory alloys (SMAs) are metallic materials with strong thermomechanical
driving forces and the capacity to undergo significant reversible deformations under
loading and heat cycles. The behaviour of SMAs is due to their innate propensity to
experience temperature- and stress-induced reversible changes in their crystallographic
structures. These alterations can be described as reversible martensitic transformations
from the crystallographically less-ordered martensite (M) parent phase to the more-ordered
austenite (A) parent phase. Furthermore, an SMA disconnects the connector in our design
more effectively due to its high strain rate [1].

Super elasticity (also known as pseudo elasticity) and the shape memory effect are
two distinct properties that describe how SMA wires behave when they try to regain
their original shape [2]. When a metal is heated over a specific transition temperature, a
phenomenon known as the form memory effect occurs, wherein the metal returns to its
original size and shape. The shape memory effect is the ability of a specimen to change
from a martensite phase to an austenitic phase, upon change of temperature. The two-way
shape memory effect, also referred to as the “reversible” shape memory effect, occurs
independently of external stress [3–5]. When the material temperature is higher than the
austenite start temperature, the superelasticity behaviour of a SMA is visible; however,
in order to fully recover a shape without residual deformation, the material temperature
needs to be higher than the austenite finish temperature.
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Ni-Ti is thought to be the most widely used and readily available material for purchase.
W.J. Buehler and his research teams found Ni-Ti in 1962 while searching for an intermetallic
compound that was ductile, creep-resistant, and fatigue-resistant [6]. Nitinol, which refers
to Nickel Titanium Naval Ordnance Laboratory, is the name that was given to this alloy.
This intriguing discovery sparked a plethora of ongoing studies on the potential of Ni-Ti
SMA materials. Superelastic behaviour, reversible stresses during heating or cooling, low
stiffness, practically bone-comparable mechanical behaviour, and exceptional corrosion
resistance are just a few of the intriguing characteristics of NiTi alloys.

An electrical fuse is a type of electronic component used in electrical circuits to protect
the circuit from overcurrent, hence safeguarding the electrical equipment and machinery
that use the circuit. A low-melting-point metal melts when there is excessive current flow,
breaking the circuit. We developed a self-actuating fuse using a NiTi-shaped memory alloy
as an alternative to changing the fuse every time it breaks [7]. It functions by compressing
the NiTi coil to cause the circuit to open when its temperature rises over the transition
temperature. Because the coil we utilized was a one-way shape memory alloy [6], it had to
be manually moved back to its starting position in order for it to activate again. Here, the
heat dissipated from the wires causes the SMA to be thermally burdened [8].

Superelastic behaviour, shape memory effect, and exceptional corrosion resistance
are only a few of the distinct qualities that NiTi alloys display [9]. The thermoelectric
properties of NiTi SMAs primarily contribute to our problem statement. They result in
significant deformation at the specified voltage, thereby triggering the fuse. In comparison
to other shape memory alloys, they exhibit a high level of fatigue resistance and corrosion
resistance. Because they are lightweight and compact, the fuse weighs less overall. Even
though they are more expensive than other SMAs, the aforementioned benefits increase the
thermal fuse’s efficiency and may lengthen its lifespan.

2. Experimental Setup

To test the SMA spring’s actuation, a setup was devised using a base made of PLA
material to hold the SMA spring. Water was selected as the testing medium due to its
controlled heating and cooling properties, which are unlike those of an electrical circuit,
wherein temperature control is difficult and risky. The austenitic temperature of the SMA
was fixed at 348 K, the point at which full deformation occurs. Figure 1a depicts the
temperature reader, and Figure 1b shows the SMA coil in the fully extended state.
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Figure 1. (a) Temperature reader; (b) SMA coil in fully extended state.

3. Results and Discussion

The experiments were carried out in non-uniform and uniform heating scenarios.
In non-uniform heating, the SMA coil began to compress at 50 ◦C, with the compres-
sion increasing as the temperature increased. The contraction behavior was not uniform
along the coil’s length, resulting in uniform and non-uniform curves on the temperature–
displacement graph, as shown in Figure 2a,b. The results are shown in Table 1.
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Figure 2. (a) Graph of uniform heating; (b) Graph of non-uniform heating. 
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at 40 °C. This behavior contrasted with non-uniform heating, where contraction began at 
50 °C. The study also revealed that heat transfer within the coil was not entirely uniform, 
with only five coils contracting by 0.5 cm between 52.2 and 62.2 °C. The main disadvantage 
is the ageing effect, in which the SMA will deform only for a certain number of cycles. But 
according to our design, the SMA will only deform very rarely [10]. It is activated only 
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Table 1. The SMA spring’s behaviour at different temperatures.

S. No. Temperature (◦C) Length of the Coil (cm) Displacement (cm)

1 45 6 -
2 50 5.2 0.8
3 55 4.4 1.6
4 60 4.3 1.7
5 65 2.6 3.4
6 70 2.4 3.6
7 75 No Changes -
8 80 No Changes -
9 85 No Changes -
10 90 No Changes -

The SMA spring exhibited uniform contraction under uniform heating, commencing
at 40 ◦C. This behavior contrasted with non-uniform heating, where contraction began at
50 ◦C. The study also revealed that heat transfer within the coil was not entirely uniform,
with only five coils contracting by 0.5 cm between 52.2 and 62.2 ◦C. The main disadvantage
is the ageing effect, in which the SMA will deform only for a certain number of cycles. But
according to our design, the SMA will only deform very rarely [10]. It is activated only
when an electric vehicle needs to be protected. Figure 3 provides a 3D image of the SMA
spring being acted on by a compression force.
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4. Conclusions

The goal of this ambitious research was to create a new preventive electrical switch
system based on NiTi smart wires. When there is an observable temperature variation, the
proposed SMA wire can detect and monitor electrical switch systems. This study allows
for the addition of an SMA wire that acts as an electrical switch via serving as a spring
between two connectors with non-uniform and uniform conditions at a temperature of
50 ◦C. According to this investigation, SMA springs increase displacement as the compres-
sion and temperature of the spring increase. This research also found that heat transfer
within the coil was not completely uniform, with only five coils contracting by 0.5 cm
between 52.2 and 62.2 ◦C. SMA spring fuses are suitable for use with electrical actuators.
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