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Abstract: The dynamic characteristics of flexible couplings with a rubber–metal element type SEGME
have been studied. The hardness of the rubber element of the SEGME 25 coupling is 53 Shore A, and
that the SEGME 63 coupling is 73 Shore A, respectively. The experimental study was carried out in
conditions of alignment of the connected shafts, and also at different levels of radial misalignment.
The influence of an additional angular misalignment was investigated. The results show that, for
this coupling type, the radial misalignments induce a downward nonlinear dependence on the
dynamic stiffness. The presence of a small angular displacement in the shafts causes significant radial
deformations. The sensitivity of the coupling decreases with the high hardness of the rubber element.
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1. Introduction

The couplings [1] are used to connect shafts in different transmission systems for
propellers [2], car engines, cranes, and many more. In some flexible coupling constructions,
the presence of radial misalignment creates angular misalignment, which, in turn, affects the
performance of the transmission [3]. Other researchers focused their efforts on the effect of
the vibration spectra of rotating machinery depending on imbalance and parallel or angular
misalignment [4]. They suggested a model for the simulation of the dynamic behaviors
and vibration characteristics of a rotating system. A modified model of Davidenkov’s
hysteresis equation of state was synthesized in [5]. On this basis, analytical solutions have
been obtained for the intensity of the amplitude of internal friction in solid bodies, as well
as in polycrystalline metals with imperfect elasticity.

The material of most working parts of flexible couplings is rubber. It is characterized by
nonlinear behavior according to load, misalignment, thermal conditions [6], and more. This
is why studies are made to describe the best coupling selection for shaft system connections.

The object of this research are flexible couplings of the SEGME type, which are de-
signed to transmit a nominal torque of Tn = 25 Nm and Tn = 63 Nm, respectively. Couplings
are made according to [7]. The main dimensions of the semi-coupling with the flexible
element are shown in Figure 1. The coupling consists of a metal flange with a hub (4),
connected by means of bolts (5) to an outer ring (1), and a rubber flexible element (2) is
vulcanized to it, which, in turn, is also vulcanized to the hub (3) for joining the shaft. The
rubber element of the SEGME 25 coupling has a hardness of 53◦ Shore A, and, for SEGME,
of 63–73◦ Shore A. Since couplings of this type were developed according to their role in
creating a type order of the Bulgarian state standard, conclusions about the nature of the
behavior of each of them under the same load conditions may apply to the entire group.
This study was carried out in order to analyze the behavior of the coupling [8] under
conditions of extreme misalignment. For a SEGME 25 coupling [7], there is an allowable
radial misalignment of 0.3 mm and an allowable axial misalignment of 0.5 mm, and for
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SEGME 63, the same misalignments are provided, respectively, at 0.5 and 0.6 mm [9].
For both couplings, the allowable angular misalignment is 2◦. For both couplings, the
allowable angular misalignment is 2◦. It is also accepted to investigate a coupling with
a real greater stiffness [10,11] in the rubber element, since, for some mechanisms, a more
accurate positioning of the driven shaft is important. Regardless of the fact that bellows
couplings have a sufficiently high resistance to torque and bending, research [5] has been
carried out on the appearance of additional load in the presence of eccentricity between the
shafts being joined. Small radial deviations have been found to induce additional radial
forces that can reach base load levels.
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Figure 1. Basic construction of the coupling SEGME type.

The coupling consists of a metal ring (1), a vulcanized rubber element (2) to it and to
metal hub (3). The metal disc (4) is connected with a ring (1) with bolts (5).

On a coupling-test stand [12], the general appearance of which is shown in Figure 2,
measurements were carried out to experimentally determine the characteristic T = T(φ) of
the couplings.
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Figure 2. A flexible coupling-test stand.

A bearing box (2) is mounted on a plate (1), in which the shaft (3) rotates on rolling
bearings, on one end of which, by means of a sleeve coupling (4), one half of the coupling
under study (5) is mounted. On the other end of the shaft (3), a two-arm bridge (6) is
fixed with the hangers (7) on which the weights (8) are placed. The other half of the
coupling is connected to the output shaft of the worm gear reducer (9), which ensures
its immobility. The grooved plate (10) allows axial movement of the reducer (9), and
a flywheel (14) mounted on the input shaft of the reducer (9) adjusts the angular position
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of the contact arm (13) relative to the indicator. The linear relative displacement of the
driving to the driven shaft under load is determined by an indicator clock (11) mounted on
the bracket (12).

In studies of companies that produce flexible couplings, a methodology for determin-
ing the dynamic stiffness CTdyn = Tel

φw
(as in [6,13]) is recommended. It is recommended

that the dynamic stiffness be determined according to Figure 3. TW and φw denote the
amplitude changes in the torque and the angular deformation of the flexible element.
The dynamic stiffness is determined based on 0.8 of the variable components of the load,
i.e., Tel = 0.8 × TW . Usually, the amplitude load is taken within the limits of 20–25% of the
nominal. For the coupling with Tn = 25 Nm, variation limits of 16 to 31 Nm are accepted,
and, for the coupling with Tn = 63 Nm, the limits are from 40 to 80 Nm.
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2. Methodology

The characteristics of the SEGME 25 coupling, under conditions of shaft alignment and
radial misalignment, are taken as follows: ∆r = 0; ∆r = 0.3; ∆r = 0.6; and ∆r = 1.0 mm. The
characteristics are shown in Figure 4a. At the same radial misalignments, the characteristic
of the coupling was taken, in the presence of an angular misalignment from the axis of 1◦.
The results of this study are graphically depicted in Figure 4b.
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angular misalignment.

Analogous studies were also carried out for the SEGME 63 coupling. The results for
the characteristics, at the same values of radial misalignment (0.3 mm; 0.6 mm; and 1 mm),
are graphically shown in Figure 5a. Figure 5b shows the graph of the coupling at the above
radial misalignment and an additional angular misalignment of 1◦.
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3. Results

Based on the recorded dynamic characteristics, we determined the angular deforma-
tion φw corresponding to Tel. The dynamic stiffness is determined by Equation (1):

Cdyn = Tel/φW . (1)

The results of the obtained values for the dynamic stiffness of the SEGME 25 coupling
in the presence of only radial misalignment (0.3 mm; 0.6 mm; and 1 mm), and also with an
additional angular misalignment of 1◦, are shown in Table 1 and are graphically illustrated
in Figure 6a.

Table 1. Dynamic stiffness of a SEGME 25 coupling with radial and angular misalignment.

Misalignments ∆r = 0 ∆r = 0.3 ∆r = 0.6 ∆r = 1.0
TW [Nm] 4.5 4.5 4.5 4.5
φw [rad] 0.015625 0.015734 0.015901 0.016187

Cdyn [Nm/rad] 288 286 283 278

Misalignments ∆r = 0; 1◦ ∆r = 0.3; 1◦ ∆r = 0.6; 1◦ ∆r = 1.0; 1◦

TW [Nm] 4.5 4.5 4.5 4.5
φw [rad] 0.015845 0.016187 0.016667 0.01751

Cdyn [Nm/rad] 284 278 270 257

Eng. Proc. 2024, 60, x  5 of 8 
 

 

Cdyn [Nm/rad] 1336 1320 1302 1276 

The dynamic stiffness variation in a SEGME 63 coupling with only radial misalign-
ment, and also with radial and angular misalignment, is shown in Figure 6b. 

  
(a) (b) 

Figure 6. Variation in the dynamic stiffness of couplings in the presence of radial and angular mis-
alignment as follows: (a) for SEGME 25 and (b) for SEGME 63. 

Undoubtedly, for both couplings, the dynamic stiffness decreases and the nature of 
the curve is non-linear. For convenience, it is considered necessary to introduce relative 
stiffness change criteria. We introduce a criterion Kr, which shows the influence of the 
radial misalignment on the dynamic stiffness and is determined by Equation (2): 

𝐾𝐾𝑟𝑟 = 𝐶𝐶𝑇𝑇𝑇𝑇𝑛𝑛(∆𝑟𝑟)/𝐶𝐶𝑇𝑇𝑇𝑇𝑛𝑛(∆𝑟𝑟 = 0), (2) 

where 𝐶𝐶𝑇𝑇𝑇𝑇𝑛𝑛(∆r) represents the stiffness of the flexible element at the corresponding radial 
misalignment. 𝐶𝐶𝑇𝑇𝑇𝑇𝑛𝑛(∆r = 0) is the stiffness of the flexible element for the coaxial mounting 
of the joined shafts. 

Similarly, a criterion Krγ, is introduced, which is determined by Equation (3) and re-
flects the influence of the radial misalignment in the presence of an additional angular 
misalignment of 1°. 

𝐾𝐾𝑟𝑟𝑟𝑟 = 𝐶𝐶𝑇𝑇𝑇𝑇𝑛𝑛(∆𝑟𝑟; 1°)/𝐶𝐶𝑇𝑇𝑇𝑇𝑛𝑛(∆𝑟𝑟 = 0), (3) 

where 𝐶𝐶𝑇𝑇𝑇𝑇𝑛𝑛(∆r; 1°) represents the dynamic stiffness in the presence of radial and angular 
misalignment. 

Figure 7a shows the relative change in stiffness for the SEGME 25 coupling and Fig-
ure 7b for the SEGME 63 coupling. 

  
(a) (b) 

Figure 7. Change in criteria Kr and Krγ: (a) for a SEGME 25 coupling; (b) for a SEGME 63 coupling. 

Figure 6. Variation in the dynamic stiffness of couplings in the presence of radial and angular
misalignment as follows: (a) for SEGME 25 and (b) for SEGME 63.



Eng. Proc. 2024, 60, 26 5 of 7

The determined dynamic stiffness values for the SEGME 63 coupling in the presence
of radial misalignment (0.3 mm; 0.6 mm; and 1 mm) and angular misalignment of 1◦ are
shown in Table 2.

Table 2. Dynamic stiffness of a SEGME 63 coupling with radial and angular misalignment.

Misalignments ∆r = 0 ∆r = 0.3 ∆r = 0.6 ∆r = 1.0
TW [Nm] 30 30 30 30
φw [rad] 0.022392 0.022616 0.022848 0.023061

Cdyn [Nm/rad] 1340 1327 1313 1294

Misalignments ∆r = 0; 1◦ ∆r = 0.3; 1◦ ∆r = 0.6; 1◦ ∆r = 1.0; 1◦

TW [Nm] 30 30 30 30
φw [rad] 0.022455 0.022727 0.023041 0.023511

Cdyn [Nm/rad] 1336 1320 1302 1276

The dynamic stiffness variation in a SEGME 63 coupling with only radial misalignment,
and also with radial and angular misalignment, is shown in Figure 6b.

Undoubtedly, for both couplings, the dynamic stiffness decreases and the nature of
the curve is non-linear. For convenience, it is considered necessary to introduce relative
stiffness change criteria. We introduce a criterion Kr, which shows the influence of the
radial misalignment on the dynamic stiffness and is determined by Equation (2):

Kr = Cdyn(∆r)/Cdyn(∆r = 0), (2)

where Cdyn(∆r) represents the stiffness of the flexible element at the corresponding radial
misalignment. Cdyn(∆r = 0) is the stiffness of the flexible element for the coaxial mounting
of the joined shafts.

Similarly, a criterion Krγ, is introduced, which is determined by Equation (3) and
reflects the influence of the radial misalignment in the presence of an additional angular
misalignment of 1◦.

Krγ = Cdyn(∆r; 1◦)/Cdyn(∆r = 0), (3)

where Cdyn(∆r; 1◦) represents the dynamic stiffness in the presence of radial and
angular misalignment.

Figure 7a shows the relative change in stiffness for the SEGME 25 coupling and
Figure 7b for the SEGME 63 coupling.
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In this publication [14,15], a study of the dynamic stiffness of a bolted coupling and
a flexible intermediate element in the presence of radial misalignment was carried out.
Typical for constructions where the load induces normal stresses in the flexible element, the
dynamic stiffness increases with increasing load. In the mounting with radial misalignment,
an additional radial force is formed, which causes an increase in the dynamic stiffness
compared to the experimental results for coaxial shafts.
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4. Conclusions

With an increase in the radial misalignment up to 1 mm, which is significantly above
the prescribed allowable values in the standard, the stiffness reduction is non-linear in
nature; for the SEGME 25 coupling, it is 3.47% and for the SEGME 63 coupling, it is 3.19%.

For this coupling design, the large difference in rubber hardness from 53 to 73 Shore A
does not have a very significant effect on the dynamic stiffness, as the difference in change
at the same radial misalignment is only 0.28%.

In the presence of radial and angular misalignment, the available stiffness of the
SEGME 63 coupling decreases by only 4.47%.

When making couplings of this type with a greater stiffness or when the rubber is aging,
their reduced sensitivity should be taken into account compared to their dynamic stiffness.

In the presence of an angular misalignment of 1◦ with an increase in radial mis-
alignment up to 1 mm, the dynamic stiffness decreases nonlinearly to 10.8%, which is an
indicator of increased deformability and damping ability.

With a significant reduction in dynamic stiffness and more intense internal friction,
it is desirable to analyze the heat balance of the rubber element to ensure the necessary
service life.
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