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Abstract: This paper proposes an image linking scheme, where the plain zones of the image under
analysis are used, which are detected using the Discrete Cosine Transform. Then, a Block Matching
3D denoising filter is used to reduce the additive noise such that the residual error of the plain
zones. The Peak to Correlation Energy is applied to compare the enhanced residual noise patterns.
Experimental results show that the proposed methodology compared to conventional techniques is
better due to the emphasis on plain zones, because the detailed and edge areas introduce distortions
that can significantly affect the extracted residual noise patterns.

Keywords: digital forensic; camera identification; denoising filter; camera linking; plain detection

1. Introduction

In recent years, the development of efficient software for image tampering and editing
has made image manipulation more accessible, even for non-specialists. This technological
progress has created new possibilities for creative expression and image enhancement.
As a consequence, camera identification and the verification of the authenticity of images
are more difficult. For this reason, image forensics has become an important research
field. Also, some forensic techniques are aimed at the detection of illegal activities. These
methods ensure image integrity and identify the source of digital images.

One of the main tasks in image forensics is source image identification (SCI) [1–4]. We
can consider two different problems. In the first one, it consists of determining if the image
was taken using a specific camera. The second one is Source Camera Linking (SCL) which
is focused on determining if both images are from the same camera or not. Among the
several features that can be extracted from a digital image to solve this problem, the Photo
Response Non-Uniformity (PRNU), which is a fingerprint of the camera, appears to be a
suitable approach due to the imperfection introduced to the sensor during fabrication and
the inhomogeneity of the sensor wafers [1], which can be considered a deterministic Sensor
Pattern Noise (SPN).

Several methods have been proposed to estimate the PRNU or the SPN, which requires
the use of a denoising filter [1–3], among them the Mihcak filter [5,6] and BM3D [7,8],
although a comparison between both methods with 18 different cameras showed that the
BM3D filter provides a better performance [7,8].

Usually, the SCL problem is solved using only the residual noise extracted for each
image. The most common method is cropping a zone in the centre of the image, creating a
smaller region for its analysis that contains detailed and texture zones. Thus, the pattern
noise causes some errors since the SCL schemes produce false-positive and false-negative
results. These inaccuracies can lead to incorrect identification. For this reason, in this paper,
we propose a SCL algorithm that first analyses the image content, identifying the plain
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regions through a block classification algorithm [9]. Next, the BM3D denoising filter is
applied to extract the pattern noise fingerprint. Then, the cross-correlation is calculated
using the PCE. The evaluation results, which focus on mainly plain areas, demonstrate that
the proposed scheme provides better results than conventional methods.

The rest of the paper is organised as follows: Section 2 presents a description of the
proposed method. In Section 3, the experimental results are shown, and finally, in Section 4,
the conclusions of this research.

2. Proposed Method

Figure 1 shows the proposed source camera linking method in which firstly, the images
I1(x,y) and I2(x,y) are analysed to detect the plain regions presented in both images. The
pixels of the plain regions are used for the construction of two masks Z1(x,y) and Z2(x,y)
encoding with 1 the position of the pixels belonging to the plain regions of each image
and with zero the remaining ones. Next, both masks are multiplied among them to build a
mask Zc(x,y) = Z1(x,y) Z2(x,y) which is used to determine the position of common plain
regions in both images. Then, the common plain regions in both images are obtained by
multiplying each image by Zc(x,y). The estimated plain regions are fed into a denoising
filter, whose output is used to estimate the residual noise. The residual noises are then used
to estimate the PCE, which is used to determine if both images belong to the same camera.
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2.1. Plain Zone Segmentation

Obtaining a clean characteristic noise as a pattern may not be easy because, in practice,
this desired noise can be contaminated by some distorted factors, such as the image content,
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including edges and textures, which lead to distortions in the noise patterns. Consequently,
it becomes crucial to identify the plain regions in the image that are minimally affected by
such distortions. Therefore, it is fundamental to determine the image region, which may
contain lower distortions that may result in a contaminated residual noise pattern.

To avoid this problem, the proposed system estimates the residual noise using only the
plain zones on the images under analysis. They are estimated using the zone classification
scheme shown in Figure 2, where the image zones are classified as plain, edge, and texture.
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Figure 2. Zone classification scheme.

The plain zones are estimated using the classification scheme presented in [10]. The
block classification is obtained using the Discrete Cosine Transformation (DCT), which
segments the image into non-overlapped blocks of 8 × 8 pixels, whose coefficients are
classified as shown in Figure 3. Using the frequencies estimated in each block, the following
variables are determined.
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Figure 3. Block classification diagram.

Besides L, H and E given by (1) and (3), several other conditions are proposed to
determine the block type [10] as follows: µ1 = 125, µ2 = 900, α1 = 2.3, α2 = 1.4, β1 = 1.6,
β2 = 1.1, γ = 4 and κ = 290.

L =
2

∑
k=1

Idc(0, k) +
2

∑
k=0

Idc(0 , k) + Idc(2 , 0); (1)

E =
6

∑
k=3

Idc(k, 0) +
6

∑
k=3

Idc(0 , k) +
2

∑
k=1

Idc(3 , k)+Idc(3 , 3); (2)

H =
7

∑
k=0

7

∑
m=0

Idc(k, m)− E − L. (3)

Using these conditions together with the values given by Equations (1)–(3) the block
characteristics are determined using the magnitude of the ratios (L + E)/H and (L/E) which
indicate the presence of an edge while E + H is an approximation for a texture block. Thus,
a plain block is detected if E + H ≤ µ1, while an edge block is detected if any of the next
conditions are satisfied:
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• if E + H ≤ µ2 and 
L
E ≥ ∝ 1 and L+E

H ≥ β1
L
E ≥β1 and L+E

H ≥ α1
L+E

H ≥ γ

; (4)

• or if E + H > µ2 and 
L
E ≥∝ 2 and L+E

H ≥ β2
L
E≥ β2 and L+E

H ≥ α2
L+E

H ≥ γ

. (5)

Finally, a texture block is detected if the block does not satisfy any of the above
conditions and E + H > κ. Figure 4 shows the performance of the proposed scheme, where
Figure 4a shows an example of an original image and Figure 4b shows the classification
result using the above-described method, where the white colour represents the plain
blocks, the green colour denotes the edges and the blue is the texture blocks.
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Once the block classification is achieved, it is necessary to determine which image
region is more suitable for estimating the residual noise. As an example, we applied
the block detection method described above to Figure 5, which contained plain zones,
edges, and textures, obtaining the block classification shown in Figure 6a, where the white
colour denotes the plain blocks, the green colour represents the edges, and the blue colour
represents the texture blocks, respectively. Next, the residual noise shown in Figure 6b
was estimated. The noise pattern extracted from the plain blocks does not present a visible
distortion, while the noise pattern extracted from the edge and texture blocks is highly
distorted. This fact suggests that the noise pattern extracted from plain blocks provides a
more reliable estimation of residual noise pattern than those extracted from zones including
edge and texture blocks, as shown in Figure 7.
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To improve the performance of the proposed scheme, the residual noise will be
extracted only from plain blocks instead of a zone located in the centre of the image, as
usually done. Thus, to carry out the image linking, once the plain areas of images are under
analysis, Ii, i = 1, 2, are identified, and the pixels belonging to them are encoded, as in (6):

zi(x, y) =
{

1, if (x, y) is plain
0, Otherwise

. (6)

Subsequently, the common plain blocks are segmented in both images, described in
Equation (7):

Ici(x, y) = z1(x, y)z2(x, y)Ii(x, y); i = 1, 2. (7)

Thus, the plain blocks of size N × N obtained using (7) are used to feed into the
denoising stage. If two or more regions in both images have a suitable size to carry out the
camera linking, the first section that was segmented is selected; otherwise, several plain
regions can be concatenated to have a plain region of a suitable size.

2.2. Estimation of Peak to Correlation Energy

Once the plain zones with the same size and location in both images are detected, they
are fed into the image denoising stage, whose outputs are used to improve the residual
noise estimation [5,7]. Several denoising filters have been proposed; among them, a suitable
approach to reduce the noise in the image is the BM3D filter [7], which consists of two
stages: The first stage estimates the denoised image using a thresholding, which is part of
the collaborative filter. The second step uses both the original noisy image and the image
obtained in the first step, together with a Wiener filter [8]. Because several evaluation
results have shown that the BM3D provides better performance [8,11], when used in the
denoising stage of several image processing applications, it will be used to estimate the
image noise pattern in the decision stage as follows:

ni = Ici − Isi, (8)
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where Ici is the segmented plain block of the i-th image and Isi is the enhanced plain block
of the same image obtained using the BM3D denoising filter. Next, after the residual noises
are estimated in (9), they are enhanced, as proposed in [12]:

nei(x, y) =

{
e−0.5n2

i (x,y)/α2
, if 0 ≤ ni(x, y)

−e−0.5n2
i (x,y)/α2

, otherwise
. (9)

The next step is to obtain the PCE, which compares the residual noise patterns extracted
after the noise enhancement stage, which is given by (10):

PCE =
NCC2(0 , 0)

1
MN ∑i ∑j NCC2(i , j)

, (10)

where

NCC(i, j) =
∑N−1

k=0 ∑M−1
i=0

[
ne1(i, j)− —

ne1

][
ne2(i, j)− —

ne2

]
∥∥∥ne1(i, j)− —

ne1

∥∥∥∥∥∥ne2(i, j)− —
ne2

∥∥∥ . (11)

The PCE calculates the height of the peaks and the energy obtained from the cross-
correlation between the patterns of the two characteristic noises. Therefore, if the value of
the PCE is large, there is a greater possibility that the images belong to the same camera.

3. Results

To test the proposed method, we used the Forchheim Image Database (FODB) [13]. This
database contains an extensive collection of 3851 images from the native camera, with
outdoor and indoor, day and night scenarios, also including horizontal and vertical image
orientations; all cameras were setting to automatic mode. We focused on testing our
implementation only using the horizontal images from 12 cameras. The tested cameras are
presented in Table 1; an example of a tested image is shown in Figure 8.

Table 1. Database information.

Number of Cameras Brand Model OS Resolution

Camera 1 Motorola E3 Android 3280 × 2664
Camera 2 LG Optimus L50 Android 2048 × 1536
Camera 3 Wiko Lenny 2 Android 2560 × 1920
Camera 4 LG G3 Android 4160 × 3120
Camera 5 Apple iPhone 6s iOS 4032 × 3024
Camera 6 LG G6 Android 2080 × 1560
Camera 7 Motorola Z2 Play Android 4032 × 3024
Camera 8 Motorola G8 Plus Android 3000 × 4000
Camera 9 Samsung Galaxy S4 mini Android 3264 × 2448

Camera 10 Samsung Galaxy J1 Android 2592 × 1944
Camera 11 Samsung Galaxy J3 Android 3264 × 2448
Camera 12 Samsung Galaxy Star 5280 Android 1600 × 1200
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Also, the experiments were carried out to test the proposed algorithm. The hardware
characteristics were NVIDIA GeForce GTX 1650, Intel® Core™ i7 10th gen; additionally,
the proposed algorithm was implemented in Python 3.8.5.

3.1. Experiment I

In experiment I, the PCE was obtained when all tested images were from the same
camera source. The images were cropped in two different ways:

• The first way the image was cropped was by a single 512 × 512 plain pixel region,
named ‘one zone’;

• The second way consisted of cropping sixteen plain sections of 128 × 128 pixel size,
which were reassembled into a 512 × 512 pixel image, referred to as ‘zones’.

Both methods were compared against the conventional method, where the cropping
of the 512 × 512 pixel zone was in the centre. Table 2 shows the PCE obtained.

Table 2. PCE results from the same camera.

Number of Cameras One Zone Zones Conventional

Camera 1 35.1152 42.1491 6.4015
Camera 2 37.1227 44.2302 9.0886
Camera 3 33.6813 42.7957 7.6214
Camera 4 34.5184 45.0543 5.2810
Camera 5 35.4917 45.0038 6.9693
Camera 6 33.7016 40.7761 4.7675
Camera 7 36.0282 49.5316 8.7290
Camera 8 35.5511 44.6075 3.8505
Camera 9 34.3121 43.5091 5.6535

Camera 10 33.4316 41.5974 4.0072
Camera 11 35.9563 49.4259 7.5803
Camera 12 35.5768 43.1329 3.5796

The results of Experiment I showed that the PCE obtained with the proposed method
was higher than in the conventional method, so the SCL would be more accurate due to
the fact that the larger the PCE value is, the more likely it is that the images belong to the
same camera.

3.2. Experiment II

The second experiment consisted of obtaining the PCE when the images from one
camera were compared against the images from the other cameras as we can see in Table 3,
again by performing the two types of cropping, as mentioned in Experiment I.

Table 3. PCE results from different camera.

Number of Cameras One Zone Zones Conventional

Camera 1 0.7037 0.6353 0.9974
Camera 2 0.5950 0.5837 0.8295
Camera 3 0.6174 0.5993 0.9791
Camera 4 0.4690 0.3725 0.6912
Camera 5 0.5424 0.5278 0.7859
Camera 6 0.4785 0.3942 0.9171
Camera 7 0.6315 0.6138 0.8450
Camera 8 0.5101 0.4496 0.7488
Camera 9 0.5673 0.4569 0.8922

Camera 10 0.5415 0.4110 0.9822
Camera 11 0.5259 0.4912 0.7551
Camera 12 0.4772 0.2951 0.8825
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On the other hand, Experiment II shows that the PCE results obtained with the
proposed method were smaller than those obtained with the conventional method, as the
images were taken from different cameras; i.e., the pattern noise was different and unique
for each camera, so the closer to zero the PCE result is, the more accurate it will be to
determine that the images do not belong to the same camera.

4. Conclusions

In this paper, we proposed a method to improve the source camera linking by analysing
only the plain areas of the images, as we realised how the noise caused by the detail and
edge areas distorts the pattern noise affecting the correct camera source linking, while
the conventional method does not pay attention to the image features such as edges and
textures, so this can cause false positive or false negative results at the moment to determine
if the images belong to the same camera or not. As can be seen, the proposed method is
better to determine whether or not the images belong to the same camera. The use of plain
zones reduces noise distortions to increase the robustness and efficiency of the proposed
system. It is necessary to highlight that our method takes advantage of the detection of
plain zones and noise enhancement since conventional algorithms focus on regions that
contain edges or detailed zones, which distort the extracted noise pattern.
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