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Abstract: The concept of more electric aircraft (MEA) has gained popularity over the last few decades.
As the power level of electric loads is constantly increasing, the installation of advanced protection
systems becomes of paramount importance. In this context, this paper presents the design process
and experimental validation of a solid-state circuit breaker (SSCB), utilizing gallium nitride (GaN)
semiconductor switches, under various faulty conditions. In addition, a thermal analysis was carried
out in the PLECS simulation platform to find the most appropriate design for the heat dissipation
system. Experimental results on the developed GaN SSCB hardware prototype verify its functionality
and good performance.

Keywords: DC microgrids; gallium nitride (GaN); more electric aircraft (MEA); solid-state circuit
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1. Introduction

The more electric aircraft (MEA) concept has emerged over the last few decades as
a promising solution for greener transportation with enhanced performance, reduced
greenhouse gas emissions, and less dependence on carbon-based fossil fuels [1]. MEA
distribution networks are constantly evolving, moving from purely AC to hybrid con-
figurations, whereas purely DC microgrid architectures have been proposed for future
aircraft [2]. In parallel, these power electronic-dominated grids comprise various power
sources with particular characteristics, hybrid energy storage systems, and tightly con-
trolled electronic loads with specific power demands (e.g., constant power, pulsed power,
intermittent operation, etc.) [3].

In this light, new challenges arise regarding the protection of on-board DC distribu-
tion networks. Traditionally, MEA protection systems were based on conventional circuit
breakers (CBs), which include magnetothermal elements [4], breaking the circuit before the
current reaches its peak value or when the maximum tripping time has passed. Neverthe-
less, CBs are not able to detect arc faults, as they have a very short duration. Thus, CBs are
considered inappropriate for such applications. Another more recently introduced option
is the arc-fault circuit breaker (AFCB), which features the same operating principle as CBs,
yet it is capable of protecting the DC microgrid against electric arc faults [5].

Moreover, the remote control and monitoring of the electric power distribution sys-
tem’s characteristics (i.e., current and voltage setpoints) are of paramount importance;
however, this feature is not supported by AFCBs. A device incorporating the functionality
of CBs allowing for remote management is the remote control circuit breaker (RCCB).
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However, its slow response time (i.e., from 15 ms to several seconds) may jeopardize the
overall system operation; thus, RCCBs are considered unsuitable for MEA applications [5].

With the notable advancements in semiconductor material technology during the last
few decades, SSCBs have gained popularity for such installations because of their ability
to provide rapid circuit breaking in cases of faults. Furthermore, with the inverse time
control loop (I2t), SSCBs feature overheating protection while being capable of effectively
handling fault interruptions under normal transient conditions (e.g., inrush currents) [6].
Their additional features include high reliability, efficiency, and power density.

In parallel, in order to exceed the performance limits of typical Si semiconductor
switches that have been extensively used in a wide range of power electronic applications,
new wide-bandgap (WBG) materials have been developed for such applications [7]. SiC and
GaN are the most popular WBG materials used in power switches. Specifically, GaN-based
FETs have been reported in recent scientific research as an appropriate option for SSCB
implementation, because of their improved performance in terms of efficiency (i.e., low
conduction losses due to the low turn-on resistance values, Rds,on) and thermal conductivity,
which leads to lower heatsink size [7,8]. Additionally, the enhanced electron mobility and
saturation velocity of GaN are related to improved switching characteristics, leading to
considerably decreased turn-off times [7]. As for the GaN transistor market, currently,
devices in the 600 V and 650 V classes are commercially available.

Various recently published papers investigate the behavior of SSCBs in both short
circuits and steady-state operation (e.g., in [9]). Regarding the GaN-based SSCBs, in [10], an
extensive study on the robustness of 650 V GaN HEMTs under short-circuit conditions, for
various gate drive voltages and temperatures was performed. Moreover, this study revealed
the device degradation trends after repetitive fault tests. In parallel, Ref. [11] focused on
distribution networks’ protection by SSCBs by adopting parallel GaN bidirectional switches.
Minimum conduction losses, as well as high current fault clearing in the µs scale, were
obtained (i.e., interruption of 306 A in 1.2 µs). Furthermore, in [12], the design of a GaN-
based switch rated at 45 A for both 380 V DC and 230 V AC grids is presented, along with
its thermal analysis, to provide the temperature rise for various operating conditions.

In this context, this work involves a study of the implementation of a GaN-based
SSCB for the protection of low-voltage DC microgrids, applicable to MEA. A complete
thermal design is also provided, and the I2t current-limiting control strategy is digitally
implemented. Experimental results in a 48 V laboratory-scale DC microgrid are obtained,
validating the functionality of the proposed design. The rest of this paper is organized as
follows: In Section 2, the proposed system (both power and control stages) is presented
and analyzed in detail. Next, in Section 3, the studied system is modeled and simulated in
PLECS, and more details on the developed hardware prototype, as well as experimental
results, are presented. Finally, Section 4 concludes the paper.

2. System Description
2.1. System Overview

Significant effort has been made by researchers and engineers to find the most appro-
priate topologies for SSCB applications [13]. Thanks to its minimized power losses and few
component count, this topology is considered the most suitable for high-power applica-
tions, specifically for MEA. The operating states for steady-state and short-circuit cases are
depicted in Figure 1. State 1 corresponds to the steady-state condition, in which MOSFET
switches are turned on, and the current reaches its nominal value; thus, in this state, the
conductive path is provided for the fault current before the tripping time (predefined
turn-off delay) is exceeded.

After this point, MOSFETs transition to State 2; the energy is stored in a feeder
inductance (Lcable) and charges the snubber capacitor with the help of a freewheeling
MOSFET body diode. When the body diode is turned off, the fault current decreases,
transitioning so to State 3. The stored charge in the capacitor starts discharging through the
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snubber resistances during this state. This configuration can accommodate the bidirectional
current flow.
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Figure 1. Operating states of the common source SSCB topology.

The clearing of the maximum fault current (e.g., solid short circuit), as well as the
sudden disconnection of the fault side, leads to overvoltages across the SSCB device, which
may result in much higher voltage levels than the nominal value. These overvoltages
are caused by the feeder inductor’s stored energy. A solution to this issue is the addition
of a snubber circuit, as mentioned above. When the feeder’s stored energy exceeds the
snubber’s handling capability, additional measures can be taken, such as the use of transient
voltage suppressors (TVSs). Ideally, in steady state mode, no current flows through the
TVS; yet, during fault conditions, it acts as a short circuit, preventing damage due to
overvoltages. Aside from TVSs, metal oxide varistors (MOVs) can be used for high-energy
dissipation. MOVs operate as resistors and offer higher surge voltages and current ratings
than TVS devices [14].

2.2. Detailed Description of the I2t Control Strategy

Regarding the controller implementation, the SSCB operates under the inverse time
protection scheme (I2t), where different fault current values correspond to a different
(predefined) tripping time delay, avoiding unnecessary interruptions in cases of temporary
faults. Figure 2 illustrates the considered I2t curve, in which two areas can be distinguished;
area 1 represents a solid short circuit (i.e., the maximum fault current, which can reach
ten times the nominal steady-state value), and area 2 represents the I2t response, in which
the current varies from low values to approximately nine times the nominal one, and the
tripping time varies accordingly. It should be noted that a solid short circuit can be instantly
interrupted (i.e., the upper limit of 3 ms is determined by considering the maximum delay
due to the driving circuit and the control loop’s digital implementation).

The aforementioned I2t control strategy is digitally implemented with the aid of the
TMS320F8379D microcontroller provided by Texas Instruments, using the PLECS coder.
Such a microcontroller is a convenient solution for digital control in power electronic
applications, as it incorporates analog comparators with ramp generators, error amplifiers,
and several PWM and ADC modules in a single IC, minimizing the need for additional
external components [15].

The main modules for the digital implementation of the current control scheme are
the ePWM and the ADC. Various blocks from the PLECS library (e.g., timers) are used to
implement the control algorithm. Furthermore, the external mode operation allows for the
real-time monitoring of the measured signals of the standalone model. Finally, with code
generation via PLECS, the programming effort is minimized. Figure 3 presents the block
diagram of the control scheme implemented in PLECS (version 4.7.5) simulation software.
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Figure 2. The current limiting control strategy, based on the I2t curve.
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3. Simulation and Experimental Results
3.1. Thermal Analysis of the SSCB

During fault conditions (e.g., short circuits), a high increase in junction temperature
(Tjunction) is expected, due to excessive heat dissipation. In steady-state operation, Tjunction
can be estimated by using Expression (1). In this operating mode, the temperature rise is not
significant when the I2t control is activated, although increased current levels beyond the
nominal value (e.g., due to repetitive faults) may accelerate the aging of the semiconductor
device. Consequently, the selection of power devices with suitable thermal characteristics
is of paramount importance, in order to operate the device within the safe operation area
(SOA), during both steady-state and transient conditions.

Additionally, the SSCB thermal model can be obtained by the thermal impedance from
junction to ambient (Zth,ja), which is calculated from the sum of the intermediate thermal
impedances (i.e., Zth,ja = Zth,jc + Rth,cs + Rth,ca). The junction-to-case thermal impedance
(Zth,jc) is determined by the GaN semiconductor’s characteristics. Moreover, the case-to-
ambient thermal resistance (Rth,ca) is related to the size, shape, and material of the heatsink.
Thus, the proper selection of the cooling means is imperative to maintain the temperature
rise within the SOA and optimize the overall system power density.

Pmax =
Tjunction − Tambient

Rth,ja
(1)

The main characteristics of the studied system are presented in Table 1. The full-scale
SSCB configuration comprised three parallel branches (i.e., three common-source switches
connected in parallel), and it was connected to a 48 V DC bus, considering the maximum
(worst case scenario, i.e., a solid short circuit) current at 70 A. Two GaN HEMT thermal
models were imported into the PLECS software for the 100 V class. Specifically, the GS1008
and GS6516 devices, provided by GaN Systems, were selected, and they complied with
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the studied system specifications. Simulation results are presented in Figure 4. It is worth
noting that the simulation tests were carried out considering a solid short circuit of 120 A,
which is the maximum allowable (pulsed) current for the specific GaN transistors. GS6516
was found to be unsuitable for the specific application, as its operation within the SOA
limits was satisfied only for extremely low thermal resistances, leading to an increase in the
cooling system volume and thus reduced power density.

Table 1. Main parameters of the full-scale studied system.

Component/Symbol Actual Value (Description)

GaN HEMT GS1008 (GaN Systems)
RDS_ON 7 mΩ (FET on resistance)

VDS 100 V (breakdown voltage)
Tjmax 150 ◦C (maximum temperature in steady-state operation)
Lcable 10 µH *
Rcable 1 mΩ *

Snubber
Csnubber 16 µF (snubber capacitance)
Rsnubber 7.5 Ω (snubber resistance, rated at 10 W)

VDC 48 V (bus voltage)
* Equivalent series feeder inductance.
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Furthermore, Figure 5 illustrates the thermal behavior of the GS1008 transistor under
the operation of the I2t current limiting strategy presented in Figure 2. The increase in the
fault current value barely influenced the temperature rise, whereas different thermal resis-
tance values led to different temperature values. Therefore, finding the desired operating
temperature during fault conditions led to the selection of suitable thermal resistance. In
order not to accelerate device aging, the appropriate temperature was selected to be below
100 ◦C; therefore, the 10 K/W thermal resistance value was selected to maintain the volume
and weight of the cooling system at acceptably low levels.

3.2. Experimental Validation

The previously discussed thermal analysis revealed the optimal thermal resistance
value for operation within the limits of SOA, as well as the most appropriate GaN HEMT of
the two options. This subsection focuses on the experimental investigation of the designed
GaN-based SSCB prototype. A scaled-down configuration comprising only one of the
three parallel branches was developed; a solid short-circuit current of 20 A was considered,
and the feeder inductance was 127 µH to obtain the same thermal characteristics as the
full-scale simulated system; the rest of its features were the same as those presented in
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Table 1. Figure 6 shows the response of the developed protection device during an instant
solid short circuit (trip fault). The total delay time did not exceed 1.5 ms. Therefore, the
superior circuit-breaking performance of the GaN-based SSCB is highlighted, compared to
conventional mechanical CBs.

Figure 5. Estimation of the temperature rise during fault conditions (I2t protection scheme is consid-
ered) with the aid of PLECS software.

1 
 

 
 
 

 
Figure 6. Experimental results for the solid short-circuit test.

Last but not least, an experimental test with multiple faults/overloading conditions
was performed to examine various current levels of the I2t curve; experimental results
are presented in Figure 7. In these tests, overvoltages were detected, caused by the ex-
cessive energy that dissipated at the SSCB. Thanks to the proper design of the snubber
circuit, voltage spikes did not exceed the GaN transistor breakdown voltage in any of the
fault cases.

In parallel, the results of the experimental procedure reveal that the digital imple-
mentation of the I2t protection scheme facilitates extremely low response times to faults,
with minimized delays. This enhances the reliability and robustness of the low-voltage
DC microgrid, which is essential in MEA applications. Overall, the proper design of the
GaN-based SSCB, from both an electrical and thermal point of view, ensures the secure,
reliable, and uninterruptible operation of the DC network.
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4. Conclusions

In this work, the design and development of a GaN-based SSCB with a digitally
implemented I2t protection scheme were presented as a promising protection device for
MEA low-voltage DC microgrids. The proper thermal analysis and design were dis-
cussed to obtain highly efficient operation with minimum size and weight of the cooling
system. Experimental results indicate the functionality and good performance of the de-
signed SSCB in a wide range of faults, with fast response, highlighting its superiority over
conventional CBs.
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