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Abstract: Carrier mobilities and concentrations were measured for different p- and n-type silicon
materials in the temperature range 0.3–300 K. Simulations show that experimentally determined
carrier mobilities are best described in this temperature range by Klaassen’s model. Freeze-out
reduces the carrier concentration with decreasing temperature. Freeze-out, however, depends on the
dopant type and initial concentration. Semi-classical calculations are useful only for temperatures
above 100 K. Otherwise quantum mechanical calculations are required.
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1. Introduction

There is a growing interest on low-temperature applications of microelectronic devices
and micro-electromechanical systems (MEMS) in different areas of science, technology,
and medicine [1,2]. The development and precise functionality of devices at cryogenic
temperatures require the detailed knowledge of physical parameters of different materials,
even in the case of MEMS. For instance, little data exist about carrier concentration and
mobility in bulk silicon and diffused silicon layers down to liquid helium temperature
(T = 5 K). This makes, among others, applications of technology computer-aided design
(TCAD) simulation tools for device development difficult. The present paper deals with
experimental measurements (Hall measurements) of carrier concentration and mobility in
the temperature range 0.3 K ≤ T ≤ 300 K. Results are compared with reference data given
in the literature. The effect of the observed data on TCAD simulation results is discussed.

2. Experimental Details

Different silicon materials have been used for experiments including n-type (phos-
phorous doped, 8 × 1012 cm−3 ≤ P ≤ 3 × 1018 cm−3) and p-type materials (boron doped,
7 × 1012 cm−3 ≤ B ≤ 5 × 1016 cm−3). Hall structures and different types of diodes were
prepared on such wafers (diameter 100 mm) using typical CMOS processes. Hall measure-
ments were carried out in the temperature range 5 K ≤ T ≤ 300 K and at magnetic fields
up to 1 T. Resulting carrier concentrations at room temperature were compared to data
obtained by secondary ion mass spectroscopy (SIMS).

Measurements of the current-voltage (I–V) characteristics of different diodes were
realized in the temperature range 0.3 K ≤ T ≤ 520 K. The large temperature range required
different setups for preparation and measurement. An overlap of measurements in different
temperature ranges was necessary to combine all data.
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Different semi-classical and quantum mechanical simulation tools were applied to
simulate the I–V characteristics of diodes. Simulations showed that the precise knowledge
of carrier concentration and mobility is important even in the low-temperature regime.

3. Carrier Mobility and Concentration

Figure 1 shows results of measurements of electron and hole mobilities at 300 K in
comparison to reference data given in the literature [3,4]. For electrons, the experimental
data follow the reference data except on low dopant concentrations (CP ≤ 2 × 1013 cm−3),
where higher mobilities are measured. On the other hand, significant differences are
obtained for hole mobilities at CB ≤ 1 × 1016 cm−3. Slightly lower values of the hole
concentration are measured for moderately doped materials (1 × 1014 cm−3 ≤ CB ≤
1 × 1016 cm−3), while higher values are determined at extremely low dopant concentrate
(CB ≤ 2 × 1013·cm−3).

Eng. Proc. 2021, 6, 86 2 of 5 
 

 

Measurements of the current-voltage (I–V) characteristics of different diodes were 
realized in the temperature range 0.3 K ≤ T ≤ 520 K. The large temperature range required 
different setups for preparation and measurement. An overlap of measurements in dif-
ferent temperature ranges was necessary to combine all data. 

Different semi-classical and quantum mechanical simulation tools were applied to 
simulate the I–V characteristics of diodes. Simulations showed that the precise 
knowledge of carrier concentration and mobility is important even in the 
low-temperature regime. 

3. Carrier Mobility and Concentration 
Figure 1 shows results of measurements of electron and hole mobilities at 300 K in 

comparison to reference data given in the literature [3,4]. For electrons, the experimental 
data follow the reference data except on low dopant concentrations (CP ≤ 2 × 1013 cm−3), 
where higher mobilities are measured. On the other hand, significant differences are ob-
tained for hole mobilities at CB ≤ 1 × 1016 cm−3. Slightly lower values of the hole concen-
tration are measured for moderately doped materials (1 × 1014 cm−3 ≤ CB ≤ 1 × 1016 cm−3), 
while higher values are determined at extremely low dopant concentrate (CB ≤ 2 × 
1013·cm−3). 

1E13 1E14 1E15 1E16 1E17 1E18

100

1,000

holes

 

 

T = 300 K

M
ob

ili
ty

 (c
m

2 /V
s)

Impurity Concentration (cm-3)

electrons

 
Figure 1. Measured electron (full circles) and hole mobilities (full squares) in comparison to refer-
ence data given in the literature (lines according to [3] and open triangles to [4]). T = 300 K. 

Temperature-depended mobilities for holes and electrons are shown in Error! Ref-
erence source not found.. The increase of mobilities of both types of carriers with de-
creasing temperature is clearly shown. Furthermore, mobilities also depend on the carrier 
concentration. The mobility decreases at a given temperature with increasing dopant 
concentration. The effect is more pronounced for electrons. Recent TCAD tools contain 
numerous models to calculate carrier mobilities. The model of Klaassen [5,6], however, is 
most frequently applied to simulate temperature-dependent and concentra-
tion-dependent mobilities. It includes lattice, donor, and acceptor scattering. Elec-
tron-hole scattering is also considered. Calculated mobilities using the Klaassen model 
agree well with experimental data measured in the temperature range 30 K ≤ T ≤ 300 K. 
Decreasing temperatures, however, may cause differences between experimental and 
simulated mobility data. The reason is the freezing out of carriers with decreasing tem-
perature. 

Figure 1. Measured electron (full circles) and hole mobilities (full squares) in comparison to reference
data given in the literature (lines according to [3] and open triangles to [4]). T = 300 K.

Temperature-depended mobilities for holes and electrons are shown in Figure 2. The
increase of mobilities of both types of carriers with decreasing temperature is clearly shown.
Furthermore, mobilities also depend on the carrier concentration. The mobility decreases at
a given temperature with increasing dopant concentration. The effect is more pronounced
for electrons. Recent TCAD tools contain numerous models to calculate carrier mobilities.
The model of Klaassen [5,6], however, is most frequently applied to simulate temperature-
dependent and concentration-dependent mobilities. It includes lattice, donor, and acceptor
scattering. Electron-hole scattering is also considered. Calculated mobilities using the
Klaassen model agree well with experimental data measured in the temperature range
30 K ≤ T ≤ 300 K. Decreasing temperatures, however, may cause differences between
experimental and simulated mobility data. The reason is the freezing out of carriers with
decreasing temperature.
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Figure 2. Temperature-dependent hole (top) and electron mobilities (bottom) of silicon with dif-
ferent doping levels specified in the figure. 
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Figure 2. Temperature-dependent hole (top) and electron mobilities (bottom) of silicon with different
doping levels specified in the figure.

The dependence of the carrier concentration on the temperature is presented in
Figure 3 for different n- and p-type materials. Data of the carrier concentration are dis-
played in the Figure as relative values in relation to data at T = 300 K, which more clearly
demonstrates the effect of freeze-out. The presented data explicitly show that freeze-out
causes a continuous decrease of the carrier concentration with decreasing temperature for
both material types. The decrease of the carrier concentration starts already at higher tem-
peratures (around 300 K) and is much stronger for lower doping levels. For instance, nearly
all dopants are not ionized already at temperatures of about 200 K for p-type material
having an initial dopant concentration of CB ∼= 2 × 1012 cm−3. The freeze-out phenomenon
is described in semi-classical TCAD simulation tools on the Fermi–Dirac statistics [7]. The
carrier density in semiconductors (required to solve the Poisson equation) is

ρ(x) = q
[
nP − ne + N+

D − N−
A
]

(1)

where q is the elementary charge, nP and ne are the densities of holes and electrons, respec-
tively, and N−

A and N+
D are the concentrations of ionized acceptors and donors, respectively:

N−
A =

NA

1 + 4 · exp
[

EA−EFP
kT

] N+
D =

ND

1 + 2 · exp
[

EFn−ED
kT

] (2)

The concentrations of holes and electrons in Equation (1) are

ne = ni

exp
[

EFn−Ei
kT

]
ξ
[

EFn−EC
kT

] nP = ni

exp
[

Ei−EFp
kT

]
ξ
[

EV−EFp
kT

] (3)

EFP and EFn are the quasi-Fermi levels of holes and electrons. EA and EC are the band
edges of the valence and conduction band, respectively. EI characterizes the intrinsic Fermi
level. The described formalism of Jaeger and Gaensslen [7] was applied to simulate the
temperature dependence of the transconductance of SOI MOSFETs [8]. The calculated data
agree with measurements down to about 100 K. Differences exist at lower temperatures
referring to basic problems of semi-classical device simulations. For instance, photolu-
minescence data and conductivity measurements refer to large amounts of non-ionized
dopants already at room temperature [9,10]. In addition, Hall measurements demonstrated
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a strong effect of incomplete ionization in compensated boron and phosphorous doped
silicon [11]. The dependences of the freeze-out on the concentration and type of the dopants
make the application of semi-classical tools questionable for low-temperature simulations.
An alternative is quantum mechanical device simulations.
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Figure 3. Measured carrier concentration (relative values) of various n- (a) and p-type silicon materials (b) in dependence 
on the temperature. The relative values are the actual concentration at temperature T in relation to room temperature 
values ((C300K − Cact)/C300K). The carrier concentrations at T = 300 K are for n-type materials (1) 1 × 1018 cm−3, (2) 1 × 1018 cm−3, 
(4) 1 × 1016 cm−3, (5) 2 × 1013 cm−3, and for p-type materials (1) 2 × 1016 cm−3, (5) 2 × 1012 cm−3, (7) 2 × 1016 cm−3, and (9) 3 × 1016 
cm−3. 

EFP and EFn are the quasi-Fermi levels of holes and electrons. EA and EC are the band 
edges of the valence and conduction band, respectively. EI characterizes the intrinsic 
Fermi level. The described formalism of Jaeger and Gaensslen [7] was applied to simulate 
the temperature dependence of the transconductance of SOI MOSFETs [8]. The calculated 
data agree with measurements down to about 100 K. Differences exist at lower temper-
atures referring to basic problems of semi-classical device simulations. For instance, 
photoluminescence data and conductivity measurements refer to large amounts of 
non-ionized dopants already at room temperature [9,10]. In addition, Hall measurements 
demonstrated a strong effect of incomplete ionization in compensated boron and phos-
phorous doped silicon [11]. The dependences of the freeze-out on the concentration and 
type of the dopants make the application of semi-classical tools questionable for 
low-temperature simulations. An alternative is quantum mechanical device simulations. 
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