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Abstract: The change in levels of volatile organic compounds (VOC) present in exhaled breath can
be indicative of bodily disorders. Detection of such low levels of VOCs can allow early detection and
diagnosis of diseases. A polymer- modified Quartz Tuning Fork (QTF) is a promising, cost-effective
sensor that can detect a change in ppm levels of VOCs exhaled from the breath at room temperature.
Acetone and acetaldehyde are biomarkers that are readily exhaled by human beings. Increased levels
of these analytes can serve as indicators for toxicity or a wide array of diseases. The present work uses
an array of QTFs modified separately using nanomaterials embedded in polystyrene to detect low
VOC concentrations present in simulated human breath successfully. The sensor response shows a
clear distinction between healthy human breath and breath spiked with varying VOC concentrations
(5–400 ppm). The sensor response proves it can potentially serve as an economical and non-invasive
tool for disease diagnostics.

Keywords: exhaled breath; biological markers; volatile organic compounds; QTF-based sensors;
nanostructures

1. Introduction

Human beings exhale numerous volatile organic compounds (VOCs) whose levels
range in parts-per-million (ppm) or parts-per-billion (ppb). These VOCs may be of local,
endogenous, or exogenous origins [1]. The origins can be traced to varied biochemical,
biological, and cellular processes occurring in the body. VOCs are either subtracted from
inspired air (by degradation and/or excretion in the body) or added to alveolar breath as
products of metabolism. The air that is inhaled goes into the alveoli in the lungs where the
metabolic excretable products diffuse into the inhaled air and then it is rejected in the form
of exhaled air. Therefore, the exhaled air must carry the fingerprint of the endogenous
metabolic processes and alterations in the levels of these exhaled compounds may serve as
indicators or biomarkers of diseases.

Exhaled human breath is comprised mostly of nitrogen (78.04%), oxygen (16%), carbon
dioxide (4–5%), hydrogen (5%), inert gases (0.9%), water vapor [2]. Different biochemical
and physiological processes generate VOCs which can be classified as alcohols, aldehy-
des, acids, or ketones. For instance, inorganic VOCs such as nitric oxide (10–50 ppb),
nitrous oxide (1–20 ppb), ammonia (0.5–2 ppm), carbon monoxide (0–6 ppm), hydrogen
sulphide (0–1.3 ppm), etc., and organic VOCs such as acetone (0.3–1 ppm), ethanol, iso-
prene (∼105 ppb), ethane (0–10 ppb), methane (2–10 ppm), pentane [0–10 ppb], etc. are
commonly exhaled. The research on breath analysis over the years has indicated the origin
of numerous VOCs and linked them with specific diseases. The concentration of fractional
exhaled nitric oxide has been reported for monitoring respiratory disorders such as asthma,
chronic cough, and chronic obstructive pulmonary disorder [3]. Breath isoprene levels
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have been linked to the presence of chronic kidney disease, diabetes, blood cholesterol,
lung cancer, and end-stage renal failure [4]. High levels of exhaled ammonia (>550 ppb)
are associated with kidney malfunction such as chronic kidney disease [5]. Acetone and
acetaldehyde are two such VOCs which are readily exhaled by humans and varying lev-
els are associated with many diseases. Acetaldehyde level change corresponds to acute
respiratory distress syndrome, lung cancer, chronic pulmonary disorder, and exposure to
ethanol among others [6,7]. Acetone is a well-known biomarker of diabetes, lung cancer,
and can indicate heart failure [6,8]. Thus, acetone and acetaldehyde were chosen for this
study owing to the multitude of diagnostic possibilities using these two VOCs.

Measurement and analysis of levels and types of exhaled VOCs are carried out by
a variety of techniques; gas-chromatography-mass-spectrometry (GC-MS), ion mobility
spectrometry (MCC-IMS), proton transfer reaction mass spectrometry (PTR-MS), differ-
ential mobility spectrometer (DMS), etc. [9]. Gas sensors such as optical gas sensors [10],
mass-sensitive gas sensors [11,12], chemiresisitve sensors [13], and SAW detectors [14] are
reportedly used to identify type or concentration of VOC biomarkers. However, these
techniques are expensive and often operate at high temperatures. Therefore, in this work,
we propose the use of nanoparticle-enhanced polymer modified Quartz tuning forks as
low concentration gas sensors.

Quartz tuning forks (QTFs) are single crystal quartz mechanical oscillators whose
piezoelectric material quartz allows the QTF to be excited electrically and its resonant
frequency to be read out electrically [15,16]. In recent years, QTFs have been widely used
as sensors due to their high stability, precision, large Q factor, low power consumption and
high thermal stability. QTFs are mechanical transducers, since changes in the mechanical
properties of the system can be monitored by measuring the changes in resonant frequency
which is measured in the form of an electrical signal. After modification, when a polymer
film forms between the tines of a QTF and its resonant frequency increases, it is called
a spring loaded system. Here, we have developed such QTFs modified with polymer
films as sensors for detection of low concentrations of acetone and acetaldehyde spiked in
human breath.

2. Materials and Methods
2.1. Materials

For this work, TiO2 and WO3 nanostructures were synthesized. All chemicals were
used as procured. TiO2 nanoparticles were synthesized used a simple sol–gel procedure
found elsewhere [17]. WO3 nanorods were synthesized by a hydrothermal method reported
elsewhere [18]. The synthesized nanostructures were characterized by identifying the
morphology using Scanning Electron Microscopy (SEM) and the elemental composition
was confirmed using Energy Dispersive X-ray Analysis (EDX). Both Figures 1 and 2 showed
formation of nanosized structures over the area of study. The EDX graphs captured peaks
corresponding to the elemental composition of the synthesized materials and a lack of
other elements indicated an impurity-free composition.
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sensor array. Breath was collected with ethical consent from volunteers. A known volume 
of VOC is added to the breath samples collected to make simulated breath which is then 
impinged on the sensors. The change in frequency is noted as the sensor response. Figure 
3a shows the response recorded by TiO2-PS and response in figure 3b is from WO3-PS 
modified QTFs to breath and acetaldehyde spiked breath (5–80 ppm). Figure 4a shows the 
response recorded by TiO2-PS and figure 4b shows the response of WO3-PS modified QTFs 
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Sensor response shows that both sensors give a comparable response to 5 ppm acet-
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The created sensors are capable of differentiating between varied ppm level concentra-
tions of VOCs and provide a sufficient response to pure breath, thereby are suitable can-
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Figure 2. Morphology and elemental composition of WO3 nanorods.

2.2. Modification of QTFs

For modification of the quartz tuning forks, a 5 weight% Polystyrene blend was
prepared in aniline by stirring at room temperature. To the prepared solution, 1 weight%
of the prepared nanoparticles was added and stirred for 24 h. Once a stable blend was
obtained, 5 µL of the polymer/nanostructure solution was dropped into deionized water
bath. Since the blend is hydrophobic in nature, a thin layer of polymer film is formed on
the surface of water. A QTF is submerged under the water and taken out such that the as
formed film is caught on the tines of the QTF. The resultant QTFs are dried for 24 h at room
temperature.

3. Results

Sensor response was recorded after passing breath and VOC spiked breath over
the sensor array. Breath was collected with ethical consent from volunteers. A known
volume of VOC is added to the breath samples collected to make simulated breath which
is then impinged on the sensors. The change in frequency is noted as the sensor response.
Figure 3a shows the response recorded by TiO2-PS and response in Figure 3b is from WO3-
PS modified QTFs to breath and acetaldehyde spiked breath (5–80 ppm). Figure 4a shows
the response recorded by TiO2-PS and Figure 4b shows the response of WO3-PS modified
QTFs to breath and acetone spiked breath (5–400 ppm).
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