

Abstract **Two Orders of Magnitude Improvement in the Detection Limit of Droplet-Based Micro-Magnetofluidics with Planar Hall Effect Sensors**[†]

Julian Schütt ^{1,*}^(b), Rico Illing ¹^(b), Oleksii Volkov ¹^(b), Tobias Kosub ¹, Pablo Nicolás Granell ^{1,2,3}^(b), Hariharan Nhalil ⁴^(b), Jürgen Fassbender ¹, Lior Klein ⁴^(b), Asaf Grosz ⁵^(b) and Denys Makarov ^{1,*}^(b)

- ¹ Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany; r.illing@hzdr.de (R.I.); o.volkov@hzdr.de (O.V.); t.kosub@hzdr.de (T.K.); granellpablo@gmail.com (P.N.G.); j.fassbender@hzdr.de (J.F.)
- ² Escuela de Ciencia y Tecnología, Campus Miguelete, UNSAM, San Martín, B1650KNA Buenos Aires, Argentina
- ³ Instituto Nacional de Tecnología Industrial, Av. Gral Paz 5445, San Martín, B1650KNA Buenos Aires, Argentina
- ⁴ Department of Physics & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel; hariharan.nhalil@gmail.com (H.N.); Lior.Klein@biu.ac.il (L.K.)
- ⁵ Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 84105 Beersheba, Israel; asaf.grosz@gmail.com
- Correspondence: j.schuett@hzdr.de (J.S.); d.makarov@hzdr.de (D.M.)
- + Presented at the 8th International Symposium on Sensor Science, 17–28 May 2021; Available online: https://i3s2021dresden.sciforum.net/.

Abstract: The detection, manipulation, and tracking of magnetic nanoparticles is of major importance in the fields of biology, biotechnology, and biomedical applications as labels as well as in drug delivery, (bio-)detection, and tissue engineering. In this regard, the trend goes towards improvements of existing state-of-the-art methodologies in the spirit of timesaving, high-throughput analysis at ultra-low volumes. Here, microfluidics offers vast advantages to address these requirements, as it deals with the control and manipulation of liquids in confined microchannels. This conjunction of microfluidics and magnetism, namely micro-magnetofluidics, is a dynamic research field, which requires novel sensor solutions to boost the detection limit of tiny quantities of magnetized objects. We present a sensing strategy relying on planar Hall effect (PHE) sensors in droplet-based micromagnetofluidics for the detection of a multiphase liquid flow, i.e., superparamagnetic aqueous droplets in an oil carrier phase. The high resolution of the sensor allows the detection of nanolitersized superparamagnetic droplets with a concentration of 0.58 mg cm^{-3} , even when they are only biased in a geomagnetic field. The limit of detection can be boosted another order of magnitude, reaching 0.04 mg cm⁻³ (1.4 million particles in a single 100 nL droplet) when a magnetic field of 5 mT is applied to bias the droplets. With this performance, our sensing platform outperforms the state-of-the-art solutions in droplet-based micro-magnetofluidics by a factor of 100. This allows us to detect ferrofluid droplets in clinically and biologically relevant concentrations, and even in lower concentrations, without the need of externally applied magnetic fields.

Keywords: droplet microfluidics; planar hall effect; sensorics; contactless sensing; ferrofluids

Institutional Review Board Statement: Not relevant. Informed Consent Statement: Not applicable. Data Availability Statement: Not relevant.

Citation: Schütt, J.; Illing, R.; Volkov, O.; Kosub, T.; Granell, P.N.; Nhalil, H.; Fassbender, J.; Klein, L.; Grosz, A.; Makarov, D. Two Orders of Magnitude Improvement in the Detection Limit of Droplet-Based Micro-Magnetofluidics with Planar Hall Effect Sensors. *Eng. Proc.* **2021**, *6*, 47. https://doi.org/10.3390/ I3S2021Dresden-10105

Academic Editors: Gianaurelio Cuniberti and Larysa Baraban

Published: 17 May 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).