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Abstract: Agriculture is pivotal in Bangladesh, with maize being a central crop. However, leaf
diseases significantly threaten its productivity. This study introduces deep learning models for
enhanced disease detection in maize. We developed an unique datasets of 4800 maize leaf images,
categorized into four health conditions: Healthy, Common Rust, Gray Leaf Spot, and Blight. These
images underwent extensive Pre-processing and data augmentation to improve robustness. We
explored various deep learning models, including ResNet50GAP, DenseNet121, VGG19, and a
custom Sequential model. DenseNet121 and VGG19 showed exceptional performance, achieving
accuracies of 99.22% and 99.44% respectively. Our research is novel due to the integration of transfer
learning and image augmentation, enhancing the models’ generalization capabilities. A hybrid model
combining ResNet50 and VGG16 features achieved a remarkable 99.65% accuracy, validating our
approach. Our results indicate that deep learning can significantly impact agricultural diagnostics,
offering new research directions and applications. This study highlights the potential artificial
intelligence in advancing agricultural practices and food security in Bangladesh, emphasizing the
need for model interpretability to build trust in machine learning solutions.

Keywords: ResNet50; DenseNet121; VGG19; agricultural diagnostics; socioeconomic development

1. Introduction

In the agriculturally diverse nation of Bangladesh, maize or corn is a significant crop,
serving as a staple food, a critical animal feed, and a driver of rural economy. With its
multiple applications spanning food, feed, and industrial uses, corn is instrumental in
the sustenance of several allied sectors. According to the recent agricultural census, corn
cultivation in Bangladesh is expanding, reflecting the crop’s growing importance in the
country’s food security scenario and rural economy. Beyond the numeric value it represents,
corn is the livelihood backbone for a significant portion of Bangladesh’s farming population.
Its production indirectly fuels several other sectors, most notably the country’s poultry
and dairy industry, which relies heavily on corn for feed. Moreover, corn’s adaptability to
various aro-climatic zones in Bangladesh adds to its importance, aiding in diversification of
farming and bolstering the country’s agricultural resilience amid climate change. However,
the corn industry in Bangladesh faces a persistent challenge in the form of leaf diseases,
such as Common Rust, Gray Leaf Spot, and Blight.

These diseases pose a severe threat to corn productivity and quality, highlighting
an urgent need for accurate, efficient, and disease detection and management methods.
This paper unveils a ground-breaking approach to tackle this challenge, employing deep
learning models for automated detection and classification of corn leaf diseases. Utilizing
unique datasets collected from Bangladesh’s corn fields and comprising 4800 images, we
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examine the efficacy of eight deep learning architectures—ResNet50GAP, DenseNet121,
VGG19 CNN, SqueezeNet, AlexNet, VGG16, ResNet101 and Exception—for this specific
task. Our research’s uniqueness stems from the application of a wide array of models to
agriculturally authentic, field-sourced datasets, with potential implications for agronomic
practices in Bangladesh and beyond. (Figure 1).

Eng. Proc. 2024, 59, 69 2 of 10 
 

 

examine the efficacy of eight deep learning architectures—ResNet50GAP, DenseNet121, 
VGG19 CNN, SqueezeNet, AlexNet, VGG16, ResNet101 and Exception—for this specific 
task. Our research’s uniqueness stems from the application of a wide array of models to 
agriculturally authentic, field-sourced datasets, with potential implications for agronomic 
practices in Bangladesh and beyond. (Figure 1). 

 
Figure 1. Sample images of the Corn Leaf. 

2. Literature Review 
The role of DL in agriculture, especially in detecting corn leaf diseases, has been gain-

ing traction over the years. Fraiwan et al. [1] made a significant contribution to this field 
by using deep transfer learning for classifying corn diseases from leaf images. This work 
set a foundation for others to build upon in the years that followed. In order to accurately 
forecast and categorize maize leaf disease using an Adaptive Moment Estimation opti-
mizer in DL networks, Gayathri Devi et al. [2] studied the use of complex optimization 
methods. These concepts served as the foundation for the Deep Convolution Neural Net-
work (DCNN) system developed by Mishra et al. [3] that is specifically designed for real-
time maize plant disease diagnosis. A deep convolution neural network-based classifica-
tion model for maize leaf disease was proposed by Ahila Priyadharshini et al. [4] in 2019. 

Using the Efficient Net architecture, Rajeena et al. [5] expanded on their work in 2023 
by suggesting an analytical method for detecting plant illness in maize leaves. An end-to-
end DL model for categorizing maize leaf diseases was reported in 2022 by Amin et al. [6]. 
Their results were consistent with those of Ma et al. [7,8], who concentrated on foliar dis-
ease zones on maize leaves and deep transfer CNN diagnosis of maize leaf disease. The 
following year, Setiawan et al. [9] published a comprehensive review of ML and DL for 
maize leaf disease classification, providing a synopsis of the advancements made in this 
field up to that point. Zhang et al. [10] made a substantial contribution by introducing 
improved deep convolution neural networks for the identification of maize leaf diseases. 
Gunisetti et al. [11] investigated the integration of IoT and AI in current agricultural prac-
tices, proposing an optimized DL system for smart maize leaf disease detection on IoT 
platforms via a routing algorithm. 

Around the same time, Malliga et al. [12] built a maize leaf disease classification model 
using convolution neural networks. Haque et al. [13] proposed a DL-based strategy for diag-
nosing maize crop illnesses, whereas Singh et al. [14] endorsed the notion of deep transfer  for 
maize plant leaf disease classification. Cui et al. [15] took it a step further, using CBAM and a 
lightweight auto encoder network to classify maize leaf diseases (Table 1). 

Figure 1. Sample images of the Corn Leaf.

2. Literature Review

The role of DL in agriculture, especially in detecting corn leaf diseases, has been
gaining traction over the years. Fraiwan et al. [1] made a significant contribution to
this field by using deep transfer learning for classifying corn diseases from leaf images.
This work set a foundation for others to build upon in the years that followed. In order to
accurately forecast and categorize maize leaf disease using an Adaptive Moment Estimation
optimizer in DL networks, Gayathri Devi et al. [2] studied the use of complex optimization
methods. These concepts served as the foundation for the Deep Convolution Neural
Network (DCNN) system developed by Mishra et al. [3] that is specifically designed
for real-time maize plant disease diagnosis. A deep convolution neural network-based
classification model for maize leaf disease was proposed by Ahila Priyadharshini et al. [4]
in 2019.

Using the Efficient Net architecture, Rajeena et al. [5] expanded on their work in
2023 by suggesting an analytical method for detecting plant illness in maize leaves. An
end-to-end DL model for categorizing maize leaf diseases was reported in 2022 by Amin
et al. [6]. Their results were consistent with those of Ma et al. [7,8], who concentrated
on foliar disease zones on maize leaves and deep transfer CNN diagnosis of maize leaf
disease. The following year, Setiawan et al. [9] published a comprehensive review of ML
and DL for maize leaf disease classification, providing a synopsis of the advancements
made in this field up to that point. Zhang et al. [10] made a substantial contribution by
introducing improved deep convolution neural networks for the identification of maize
leaf diseases. Gunisetti et al. [11] investigated the integration of IoT and AI in current
agricultural practices, proposing an optimized DL system for smart maize leaf disease
detection on IoT platforms via a routing algorithm.

Around the same time, Malliga et al. [12] built a maize leaf disease classification model
using convolution neural networks. Haque et al. [13] proposed a DL-based strategy for
diagnosing maize crop illnesses, whereas Singh et al. [14] endorsed the notion of deep
transfer for maize plant leaf disease classification. Cui et al. [15] took it a step further, using
CBAM and a lightweight auto encoder network to classify maize leaf diseases (Table 1).
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Table 1. Overview of Studies on Deep Learning Applications in Maize Leaf Disease Detection.

Reference Focus of Study Techniques Used Key Findings

Fraiwan et al. [1] Detecting corn leaf diseases Deep transfer learning
Significant contribution to the

field; set a foundation for
future research

Gayathri Devi et al. [2] Forecast and categorize maize
leaf disease

Adaptive Moment Estimation
optimizer in DL networks

Studied complex optimization
methods for disease

categorization

Mishra et al. [3] Real-time maize plant disease
diagnosis

Deep Convolution Neural
Network (DCNN) system

Developed a DCNN system
specifically designed for

real-time maize plant disease
diagnosis

Ahila Priyadharshini et al. [4] Maize leaf disease
classification model

Deep convolution neural
network-based classification
model for maize leaf disease

Proposed a classification
model based on deep

convolution neural network
for maize leaf disease

Rajeena et al. [5] Detecting plant illness in
maize leaves Efficient Net architecture

Suggested an analytical
method for detecting plant

illness in maize leaves using
Efficient Net architecture

Amin et al. [6] Categorizing maize leaf
diseases End-to-end DL model

Reported consistent results
with previous studies; focused

on categorizing maize leaf
diseases

Ma et al. [7,8] Foliar disease zones on maize
leaves

Deep transfer CNN diagnosis
of maize leaf disease

Consistent results with Amin
et al.; Concentrated on foliar

disease zones on maize leaves

Setiawan et al. [9]
Review of ML and DL for

maize leaf disease
classification

Comprehensive review of ML
and DL for maize leaf disease

classification

Provided a synopsis of
advancements made in the

field up to that point

Zhang et al. [10] Identification of maize leaf
diseases

Improved deep convolution
neural networks

Made a substantial
contribution by introducing
improved deep convolution

neural networks for the
identification of maize leaf

diseases

Gunisetti et al. [11] Integration of IoT and AI in
agricultural practices

Optimized DL system for
smart maize leaf disease

detection on IoT platforms via
a routing algorithm

Investigated the integration of
IoT and AI in agriculture;

proposed an optimized DL
system for smart maize leaf

disease detection on IoT
platforms

Malliga et al. [12] Maize leaf disease
classification model Convolution neural networks

Built a maize leaf disease
classification model using

convolution neural networks

Haque et al. [13] Diagnosing maize crop
illnesses DL-based strategy

Proposed a DL-based strategy
for diagnosing maize crop

illnesses

Singh et al. [14] Maize plant leaf disease
classification Deep transfer learning

Endorsed the notion of deep
transfer learning for maize

plant leaf disease classification

Cui et al. [15] Maize leaf diseases
classification

CBAM and a lightweight
autoencoder network

Used CBAM and a
lightweight autoencoder

network for classifying maize
leaf diseases

3. Data Pre-Processing

In the realm of ML and DL, data pre-processing is a vital stage that prepares the
raw data to be processed by the model. This stage ensures that the data meet the quality
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and format required for meaningful learning and accurate predictions. Here is a detailed
elaboration of the pre-processing steps we used for our study.

Image Re-sizing: For consistent input into our DL models, we re-sized all the images in
our datasets to a uniform dimension of 256 × 256 pixels. We used Open CV, a popular
open-source computer vision library, to perform the re-sizing operation. This approach
makes sure that the model is learning from the pertinent features of the leaves without
regard to their original image sizes.
Color Normalization: The images were collected under varying lighting conditions, poten-
tially influencing the overall color representation in the images. To minimize the impact of
different lighting conditions, we applied color normalization to adjust the Red, Green, and
Blue (RGB) color channels to a standard scale. We employed Reinhard’s color normalization
method, which has shown significant effectiveness in dealing with color variations caused
by different illumination conditions.
Image Augmentation: We used data augmentation techniques to artificially boost the
variety of our datasets. This approach generates new training samples by transforming the
original pictures by rotation, zooming, flipping, and horizontal or vertical shifting. For this
work, we used Keras’ Image Data Generator class, which provides substantial support for
real-time data augmentation.

The above-described pre-processing steps contributed to creating clean, consistent,
and high-quality datasets. The subsequent sections will detail the deep learning models
used, their structure, and how they were trained using these pre-processed datasets. The
dataset used in this study is centered around the classification of corn leaf diseases, a critical
problem in Bangladesh’s agricultural sector. The data as collected directly from fields across
diverse regions within the country. It features a variety of unique conditions, including
variations in lighting, leaf positioning, and camera angles, reflecting the natural complexity
and variability present in real-world agricultural environments.

4. Methodology

This research stands on the novelty of its methodology that harnesses the power of
established deep learning models and pushes their boundaries to meet the specific needs
of corn leaf disease identification a sector-specific application largely unexplored.

Development of Hybrid Models:

The hybrid model, which combines the feature extraction parts of ResNet50 and
VGG16, demonstrated an exceptional performance in the task of corn leaf disease classifica-
tion. The model achieved an impressive accuracy of 99.56%, which is the highest among all
the models used in this study. This high accuracy can be attributed to the complementary
strengths of the ResNet50 and VGG16 models. ResNet50, with its unique ‘skip connection’
mechanism, is able to effectively learn essential features from the data, even in deeper
layers. On the other hand, VGG16, with its repetition of simple 3 × 3 convolution layers,
is capable of capturing subtle details in images. By combining these two models into a
hybrid model, we were able to leverage both these strengths, resulting in a model that can
learn a broader set of features and achieve higher accuracy. This result underscores the
efficacy of using hybrid models in image-based classification tasks. It also highlights the
potential of transfer learning, where we utilize the pre-existing knowledge of these models
from their original tasks and fine-tune them to cater to our specific task. Furthermore,
the use of image augmentation techniques during the training process likely contributed
to the robustness of the model against varying disease presentations, thereby boosting
its performance.

4.1. Deep Learning Models Employed and Their Architecture

In this study, a variety of deep learning models, distinguished by their unique archi-
tectural configurations and design principles, were employed for the classification task of
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corn leaf diseases. This section provides a comprehensive description of each model and
their performance in the context of our study.

4.1.1. ResNet50GAP (Residual Network 50 with Global Average Pooling)

The ResNet architecture, proposed by He et al. in 2015, was chosen due to its in-
novative design that solves the vanishing gradient problem, a common issue with deep
neural networks. The unique ‘skip connection’ or ‘shortcut’ mechanism in ResNet allows
gradients to back-propagate directly through the network, bypassing several layers, thus
making the training of deep networks tractable. In our experiment, the ResNet50 variant,
which indicates 50 layers, achieved a loss of 0.3826 and an accuracy of 91.33%.

4.1.2. DenseNet121 (Densely Connected Network 121)

DenseNet introduced by Huang et al. in 2016, connects each layer to every other
layer in a feed-forward fashion, making the architecture quite distinct. This design ensures
maximum information flow between layers in the network, enabling the model to capitalize
on the learned features. Our DenseNet121 model, with 121 layers, achieved a training loss
of 0.0236, a validation loss of 1.2099, and a sparse categorical accuracy of 99.22% (Figure 2).
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4.1.3. VGG19 (Visual Geometry Group 19)

The VGG19 model, developed by the Visual Geometry Group at Oxford University,
is favored for its simplicity. It uses a repetition of simple 3 × 3 convolution layers in its
architecture, which allows the model to learn a diverse range of features at multiple scales.
It achieved an impressive loss of 0.0211 and accuracy of 99.44% (Figure 3).
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4.1.4. SqueezeNet

SqueezeNet introduced by Iandola et al. in 2016, stands out for its small size. Despite
having 50× fewer parameters than AlexNet, SqueezeNet can achieve comparable accuracy.
This feature makes it particularly attractive for deployment in memory-limited environ-
ments. SqueezeNet achieved a loss of 0.4345, with sparse categorical accuracy reaching
81.81% (Figure 4).
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4.1.5. AlexNet

Introduced by Krizhevsky et al. in 2012, AlexNet revolutionized the field of deep
learning for image classification. It employs a structure of convolution layers followed
by max-pooling layers, fully connected layers, and a soft max function for output. In our
work, AlexNet achieved a loss of 0.1024, an accuracy of 96.33% and a validation accuracy
of 88.70% (Figure 5).
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4.1.6. VGG16 (Visual Geometry Group 16)

Similar to VGG19, but with a total of 16 weight layers, VGG16 was used in two
different configurations in our work. The first achieved a loss of 0.0282, an accuracy of
98.79%, and a validation accuracy of 88.41%. The second, with a different optimization
strategy, reported a loss of 0.0846, an accuracy of 97.28%, and an impressive validation
accuracy of 97.33% (Figures 6 and 7) (Table 2).
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Table 2. Classification Report for VGG16 Model.

Precision Recall F1-Score Support

0 1.00 1.00 1.00 59
1 0.80 1.00 0.89 35
2 1.00 1.00 1.00 55
3 1.00 0.82 0.90 51

Accuracy 0.95 200
Macro Avg 0.95 0.96 0.95 200

Weighted Avg 0.96 0.95 0.96 200

4.1.7. ResNet101 (Residual Network 101)

This is a deeper variant of ResNet used in our study to potentially extract more
complex features. It adheres to the same residual learning framework as ResNet50 but with
increased depth. The ResNet101 model achieved a loss of 0.0176, an accuracy of 99.43%
and a validation accuracy of 92.95%.

4.1.8. Xception (Extreme Inception)

Xception architecture, proposed by François Chollet, the creator of Keras, was designed
to improve upon Inception architecture by replacing standard Inception modules with
depth-wise separable convolutions. It reported a loss of 0.2376 and an accuracy of 90.51%
(Table 3).

Table 3. Classification Report for Xception Model.

Precision Recall F1-Score Support

Common_Rust 0.78 0.95 0.86 262
Blight 0.86 0.52 0.65 225

Healthy 0.96 0.85 0.90 230
Gray_Leaf_Spot 0.54 0.82 0.65 120

Accuracy 0.79 837
Macro Avg 0.79 0.78 0.77 837

Weighted Avg 0.82 0.79 0.79 837

5. Results and Interpretation

Each deep learning model showcased remarkable results in the task of corn leaf
disease classification. The ResNet50GAP model demonstrated an exceptional accuracy
of 91.33%, highlighting its ability to learn essential features from the data. Surpassing
initial expectations, the DenseNet121 model achieved an outstanding accuracy of 99.22%,
showcasing its efficiency in detecting intricate patterns in the datasets. The VGG19 model
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justified its powerful architecture with an impressive accuracy of 99.44%, underlining its
capacity to capture subtle details in images. The SqueezeNet model, although scoring an
accuracy of 81.81%, hinted at potential performance enhancements through meticulous
parameter tuning. Despite its relatively less complex architecture, the AlexNet model
demonstrated a praiseworthy accuracy of 96.33%, highlighting the sturdiness of its design.
Two distinct variants of the VGG16 model displayed accuracies of 98.79% and 97.28%,
reiterating the potency of the VGG16 design for image-based tasks. Lastly, the ResNet101
model, with its deeper architecture, grasped complex features and achieved an applaudable
accuracy of 99.43%.

6. Conclusions and Future Research Directions

This study primarily focused on leveraging several advanced deep learning architec-
tures for the classification of maize leaf diseases. Through meticulous experimental design
and thorough analysis, the models presented promising results in disease detection with
notable accuracies. The top performers, namely DenseNet121 and VGG19, yielded impres-
sive accuracies of 99.22% and 99.44%, respectively. These significant results underscore
the potency of deep learning methodologies in plant disease detection, which in turn con-
tributes to securing food supplies, a significant global concern. Implementing the proposed
deep learning models for real-time maize leaf disease detection in Bangladesh’s agricultural
context is feasible and holds significant implications. With the increasing accessibility of
computational resources and smartphones in Bangladesh, these models can be deployed in
mobile applications for real-time disease detection. Farmers can take leaf images using their
smartphones, and the app can provide immediate diagnostic information. This approach is
feasible given the high accuracy rates of the models, their ability to process images quickly,
and the growing digital literacy among farmers. The real-time detection of maize diseases
can revolutionize agricultural practices in Bangladesh.
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