#
Evaluation of Combined Effect of Zero Flux and Convective Boundary Conditions on Magnetohydrodynamic Boundary-Layer Flow of Nanofluid over Moving Surface Using Buongiorno’s Model^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Formulation

## 3. Method of Solution

## 4. Linearization of Equations

## 5. Results and Discussion

## 6. Conclusions

- The Prandtl number (Pr) demonstrates a clear inverse relationship with temperature profiles, emphasizing the role of fluid viscosity in heat transfer.
- The plate velocity parameter (ε) reveals that higher plate velocities lead to thinner thermal boundary layers, impacting heat transfer efficiency.
- The Brownian motion parameter ($({N}_{b})$ findings showcase a decrease in concentration near the surface with increasing $({N}_{b})$, indicating enhanced Brownian motion effects on nanoparticle diffusion.
- The thermophoresis parameter $({N}_{t})$ highlights an upward trend in temperature profiles, showcasing the impact of heightened Brownian motion and expanded thermal boundary layers.
- The Eckert number (Ec) demonstrates increased temperature profiles with elevated values, emphasizing the role of fluid kinetic energy in heat transfer.
- The Lewis number (Le) is not explicitly addressed in the provided text. If specific findings are available, they can be included in the comprehensive analysis.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf.
**2006**, 128, 240–250. [Google Scholar] [CrossRef] - Khan, W.A.; Aziz, A. Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux. Int. J. Therm. Sci.
**2011**, 50, 1207–1214. [Google Scholar] [CrossRef] - Garoosi, F.; Garoosi, S.; Hooman, K. Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model. Powder Technol.
**2014**, 268, 279–292. [Google Scholar] [CrossRef] - Garoosi, F.; Jahanshaloo, L.; Garoosi, S. Numerical simulation of mixed convection of the nanofluid in heat exchangers using a Buongiorno model. Powder Technol.
**2015**, 269, 296–311. [Google Scholar] [CrossRef] - Nayak, M.K.; Akbar, N.S.; Tripathi, D.; Pandey, V.S. Three Dimensional MHD Flow of Nanofluid over an Exponential Porous Stretching Sheet with Convective Boundary Conditions. Therm. Sci. Eng. Prog.
**2017**, 3, 133–140. [Google Scholar] [CrossRef] - Ajam, H.; Jafari, S.S.; Freidoonimehr, N. Analytical approximation of MHD nano-fluid flow induced by a stretching permeable surface using Buongiorno’s model. Ain Shams Eng. J.
**2018**, 9, 525–536. [Google Scholar] [CrossRef] - Kho, Y.B.; Hussanan, A.; Mohamed, M.K.A.; Salleh, M.Z. Heat and mass transfer analysis on flow of Williamson nanofluid with thermal and velocity slips: Buongiorno model. Propuls. Power Res.
**2019**, 8, 243–252. [Google Scholar] [CrossRef] - Roşca, N.C.; Roşca, A.V.; Aly, E.H.; Pop, I. Flow and heat transfer past a stretching/shrinking sheet using modified buongiorno nanoliquid model. Mathematics
**2021**, 9, 3047. [Google Scholar] [CrossRef] - Makinde, O.D.; Aziz, A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci.
**2011**, 50, 1326–1332. [Google Scholar] [CrossRef] - Ali, B.; Mishra, N.K.; Rafique, K.; Jubair, S.; Mahmood, Z.; Eldin, S.M. Mixed convective flow of hybrid nanofluid over a heated stretching disk with zero-mass flux using the modified Buongiorno model. Alex. Eng. J.
**2023**, 72, 83–96. [Google Scholar] [CrossRef] - Ramreddy, C.; Murthy, P.V.S.N.; Chamkha, A.J.; Rashad, A.M. Soret effect on mixed convection flow in a nanofluid under convective boundary condition. Int. J. Heat Mass Transf.
**2013**, 64, 384–392. [Google Scholar] [CrossRef] - Nadeem, S.; Haq, R.U.; Akbar, N.S. MHD three-dimensional boundary layer flow of casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Trans. Nanotechnol.
**2014**, 13, 109–115. [Google Scholar] [CrossRef] - Ibrahim, W. Nonlinear radiative heat transfer in magnetohydrodynamic (MHD) stagnation point flow of nanofluid past a stretching sheet with convective boundary condition. Propuls. Power Res.
**2015**, 4, 230–239. [Google Scholar] [CrossRef] - Isa, S.S.P.M.; Arifin, N.M.; Nazar, R.; Bachok, N.; Ali, F.M. The effect of convective boundary condition on MHD mixed convection boundary layer flow over an exponentially stretching vertical sheet. J. Phys. Conf. Ser.
**2017**, 949, 012016. [Google Scholar] [CrossRef] - Rashad, A.M.; Nabwey, H.A. Gyrotactic mixed bioconvection flow of a nanofluid past a circular cylinder with convective boundary condition. J. Taiwan Inst. Chem. Eng.
**2019**, 99, 9–17. [Google Scholar] [CrossRef] - Hussain, A.; Alshbool, M.H.; Abdussattar, A.; Rehman, A.; Ahmad, H.; Nofal, T.A.; Khan, M.R. A computational model for hybrid nanofluid flow on a rotating surface in the existence of convective condition. Case Stud. Therm. Eng.
**2021**, 26, 101089. [Google Scholar] [CrossRef] - Ali, K.; Ahmad, S.; Aamir, M.; Jamshed, W.; Pasha, A.A.; Hussain, S.M. Application of the successive over relaxation method for analyzing the dusty flow over a surface subject to convective boundary condition. Ain Shams Eng. J.
**2023**, 14, 102044. [Google Scholar] [CrossRef] - Mohamed, M.K.A.; Noar, N.A.Z.; Salleh, M.Z.; Ishak, A. Mathematical model of boundary layer flow over a moving plate in a nanofluid with viscous dissipation. J. Appl. Fluid Mech.
**2016**, 9, 2369–2377. [Google Scholar] [CrossRef] - Zulkifli, S.N.; Sarif, N.M.; Salleh, M.Z. Numerical Solution of Boundary Layer Flow over a Moving Plate in a Nanofluid with Viscous Dissipation: A Revised Model. J. Adv. Res. Fluid Mech. Therm. Sci.
**2019**, 56, 287–295. [Google Scholar] - Rai, P.; Mishra, U. Numerical Simulation of Boundary Layer Flow Over a Moving Plate in The Presence of Magnetic Field and Slip Condition. J. Adv. Res. Fluid Mech. Therm. Sci.
**2022**, 95, 120–136. [Google Scholar] [CrossRef] - Rai, P.; Mishra, U. Unveiling the Behavior of MHD Mixed Convective Nanofluid Slip Flow over a Moving Vertical Plate with Radiation, Chemical Reaction, and Viscous Dissipation. CFD Lett.
**2023**, 15, 93–109. [Google Scholar] [CrossRef] - Weidman, P.D.; Kubitschek, D.G.; Davis, A.M.J. The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci.
**2006**, 44, 730–737. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rai, P.; Mishra, U.
Evaluation of Combined Effect of Zero Flux and Convective Boundary Conditions on Magnetohydrodynamic Boundary-Layer Flow of Nanofluid over Moving Surface Using Buongiorno’s Model. *Eng. Proc.* **2023**, *59*, 245.
https://doi.org/10.3390/engproc2023059245

**AMA Style**

Rai P, Mishra U.
Evaluation of Combined Effect of Zero Flux and Convective Boundary Conditions on Magnetohydrodynamic Boundary-Layer Flow of Nanofluid over Moving Surface Using Buongiorno’s Model. *Engineering Proceedings*. 2023; 59(1):245.
https://doi.org/10.3390/engproc2023059245

**Chicago/Turabian Style**

Rai, Purnima, and Upendra Mishra.
2023. "Evaluation of Combined Effect of Zero Flux and Convective Boundary Conditions on Magnetohydrodynamic Boundary-Layer Flow of Nanofluid over Moving Surface Using Buongiorno’s Model" *Engineering Proceedings* 59, no. 1: 245.
https://doi.org/10.3390/engproc2023059245