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Abstract: Small data analytics, at the opposite extreme of big data analytics, represent a critical
limitation in structural health monitoring based on spaceborne remote sensing technology. Besides
the engineering challenge, small data is typically a demanding issue in machine learning applications
related to the prediction of system evolutions. To address this challenge, this article proposes a
parsimonious yet robust predictive model obtained as a combination of a regression artificial neural
network and of a Bayesian hyperparameter optimization. The final aim of the offered strategy
consists of the prediction of structural responses extracted from synthetic aperture radar images in
remote sensing. Results regarding a long-span steel arch bridge confirm that, although simple, the
proposed method can effectively predict the structural response in terms of displacement data with a
noteworthy overall performance.

Keywords: bridge health monitoring; machine learning; artificial neural network; Bayesian
hyperparameter optimization

1. Introduction

Structural health monitoring (SHM) of bridge structures [1-4] must fully account for
various environmental actions such as ambient temperature, wind, moisture, and possible
chemical attacks [5]. In most cases, bridges, especially long-span ones, are slender and
are therefore susceptible to vibrations [6-8]. The SHM of such structures is indeed of
paramount importance for our interconnected communities [9].

Health monitoring has to exploit sensor equipment and data measurements through
data analysis and decision-making strategies. The choice of an appropriate sensing technol-
ogy and of the measurement of the structural response to different natural or man-made
excitation sources is critical to provide data sensitive to the structural state. The process
of data analytics is often conducted through data cleaning, compression, fusion [10], data
augmentation [11], data prediction [12], data normalization [13], and feature extraction [14].
Different machine learning algorithms within the realms of unsupervised learning [15-18]
and supervised learning [19] can be adopted for decision-making about whether the bridge
has suffered damage or can still operate normally.

Recently, the technology of remote sensing has opened a golden window to the
SHM of bridge structures [20-23]. With this technology, it is possible to access synthetic
aperture radar (SAR) images and extract structural displacements at different spots of the
structures without any sensor installation or labor-intensive field measurements. Despite
such important benefits, there are some limitations related to this technology. First, the
products of spaceborne remote sensing can be claimed to be Big Data, requiring ad hoc
analysis. In most cases, speckle noise in a SAR image is a major challenge for displacement
extraction. Second, unlike the contact-based sensing systems, it is not trivial to collect
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structural responses hourly. Hence, small data is the other important challenge related
to the SAR-based SHM. Third, it may be unnecessary to use feature extraction tools like
interferometric techniques to obtain information in terms of local displacements with
remote sensing, particularly in view of recent progress of machine learning algorithms.
All in all, the most appropriate solution to such challenges can be to leverage machine
learning-aided prediction capabilities.

A small dataset is one of the challenges of SHM via remote sensing, as a machine
learner with insufficient data cannot operate properly. For the problem of data predic-
tion, the same issue can affect the applicability. Since most of the predictive models are
developed from regression techniques, the use of small datasets increases the probabil-
ity of underfitting or overfitting. The best solution in this case is to take advantage of
parsimonious yet robust predictive models, featuring simple configurations but provid-
ing reliable and robust predictions without any concern related to the underfitting and
overfitting problems.

From the aforementioned discussion, it stems that the main goal of this research
is to propose a parsimonious and robust regression model to predict partial structural
displacements retrieved from a few SAR images. The proposed method is a coupling of a
regression artificial neural network (RANN) featuring a fully connected architecture and
Bayesian hyperparameter optimization (BHO). The RANN undertakes the prediction of
the structural response to temperature variability, while BHO tunes the hyperparameters
of the RANN. To assess the effectiveness of the proposed model, partial displacement
responses of a long-span bridge are adopted. Results show that the proposed RANN-BHO
method is quite successful in predicting the bridge response, even in the presence of small
training datasets.

2. Supervised Artificial Neural Network for Regression
2.1. Network Configuration

A RANN is an ANN specifically tailored for regression problems. It is a feedforward,
fully connected neural network showing the standard input layer, a number of hidden
fully connected layers, and the output layer. The network input is defined as the predictor
data. Each fully connected layer handles the input data by means of a weight matrix
and a bias vector; an activation function (e.g., the rectified linear unit, hyperbolic tangent,
sigmoid function, and linear function) can provide nonlinear transformations of the infor-
mation/data, see [24-26]. A backpropagation algorithm is adopted to tune the weights of
the RANN, managing a loss function (as a prediction error between the input and the out-
put) to be minimized with the stochastic gradient descent algorithm. Finally, the predicted
response is given as the network output. Figure 1 shows a graphical representation of the
RANN, wherein N denotes the number of fully connected (hidden) layers.
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Figure 1. Graphical sketch of the RANN.

The strength of the RANN is the ability to learn both linear and nonlinear relationships
between the predictor and the response data due to employing different activation functions,
see Hagan et al. [27]. The main hyperparameters of the RANN are the number N of
hidden layers, and the number of neurons of each layer. These hyperparameters must be
determined before the learning stage.
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2.2. Model Tuning via Bayesian Hyperparameter Optimization

Hyperparameter optimization in machine learning deals with the choice of the best
values of key parameters of a given machine learning model so that the highest overall per-
formance on a validation set can be attained [28]. Although there are different approaches
to hyperparameters tuning, Bayesian hyperparameter optimization (BHO) is the most
useful in a case when reaching a reliable overall performance is challenging, like in the
presence of small datasets to learn from. Bayesian optimization is an approach that uses
Bayes theorem to find the minimum of an objective function. The BHO keeps track of past
evaluation outputs and uses them to develop a probabilistic model through the mapping
of hyperparameters to a probability of a score on the objective function. For the problem of
data prediction, the BHO is designed to minimize the following objective function:

F = log(l + Enmse) (1)

where Ejsg denotes the cross-validation mean-squared-error (MSE) between observation
and estimation; this is achieved iteratively. At each iteration, the objective function F
in Equation (1) yields a logarithmic transformed validation loss-value computed for the
regression model, along with the relevant optimal set of hyperparameters. As mentioned,
the BHO not only handle this function, but also incorporates a probability distribution
model to be updated at each iteration. BHO thus defines an acquisition function and the
next set of hyperparameters. Hence, it can be considered to deliver a posterior probability
distribution model for each hyperparameter. The best hyperparameter values can be
selected after reaching a good match between real and predicted data.

In relation to the proposed predictive model, it has been already reported that BHO
makes attempts to tune two key hyperparameters of the RANN: the number N of the fully
connected layers and the number of neurons in each layer. Apart from hyperparameters,
a machine learning model may rest upon other unknown elements, which are termed
model parameters. The main difference between hyperparameters and model parameters
is that the former should be determined before the learning stage, while the latter can be
adjusted during the same [29]. For instance, the weight and bias of each neuron of the
RANN represents its model parameters.

3. Method Performance Evaluation for a Steel Arch Bridge

The Lupu Bridge is a steel arch bridge crossing the Huangpu River in Shanghai as
shown in Figure 2. It has a total length of 750 m, comprising a main span of 550 m and two
side spans of 100 m. Figure 2b provides the elevation view of the Lupu bridge as well as its
main sizes. The girder in the side span is a closed steel box, with a width of 41 m and a
height of 2.7 m [30].
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Figure 2. (a) A picture of the Lupu Bridge, and (b) elevation view of the bridge with main dimensions.

A long-term SHM program of the bridge was carried out by Qin et al. [30] with the
aid of spaceborne remote sensing to inspect the variability in the displacement response of
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the bridge dome and main span. Fifty-five SAR images from TerraSar-X were collected to
extract the displacements of the mentioned bridge components. During the monitoring
period, the air temperature was also recorded to incorporate seasonal and thermal effects
in the SHM program. Figure 3 illustrates the collected displacement and temperature data.
From the regression viewpoint, the displacement and temperature samples are the main
dependent (response or output) and independent (predictor or input) data, respectively.

. (a) . (b) . (c)
& T D T T D T
~ —~ 30 - *ﬁ
= g 0 —~ ! ¥
E g % %5; fk W\
Z z 5 ﬁ
= = = !
g g 10 215 # *?;
g g g 10 )
s S 15 3 ik * 1
o o E 5 X * ¥
2 ) S ¥ o |
a A 20 = op [C
20 . . . . 25 . . 5 . .
0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55
Image no. Image no. Image no.

Figure 3. Dependent and independent data for prediction: (a) displacement of the dome, (b) displace-
ment of the main span, and (c) temperature.

By dividing the dataset with a ratio 80:20, respectively referring to the training and
test subsets, the total numbers of training and test samples turn out to be 44 and 11.
For the learning process, the training samples are also subdivided on their own into the
training and validation sets, leading to 35 and 9 samples to handle respectively. Using these
datasets, the BHO is adopted to tune the number of layers and the corresponding neuron
sizes. The outcome of the optimization procedure is collected in Table 1. Figure 4 shows
the good convergence rate of the trained RANNs adopted for the dome and main span of
the bridge, as obtained with the minimization of the objective function F after 30 iterations.
Furthermore, Figure 5 depicts the results of displacement predictions obtained with these
trained models at the same dome and main span locations. As it can be observed, target and
predicted data points match well with each other. To also provide a quantitative evaluation
of the agreement, in the figure it is reported that the proposed predictive model yields
R-squared values are equal to 0.8509 and 0.9223 at the two locations.

Table 1. Tuned hyperparameters of the RANNSs via BHO.

Neuron Sizes

Element Number of Layers 1st Layer 2nd Layer 3rd Layer
Dome 2 3 2 -
Span 3 2 2 3
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Figure 4. Convergence rate of the RANNSs via BHO: (a) dome, and (b) main span.
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Figure 5. Prediction of the displacement response by the proposed RANN-BHO method: (a) dome,
and (b) main span.

4. Conclusions

This paper has discussed the issues linked to the health monitoring of bridges in cases
of limited /small datasets, like those typically collected with remote sensing systems. To
address the limitations of small data for prediction, a parsimonious yet robust predictive
model has been proposed by combining RANN and BHO. BHO has been exploited to
tune the main hyperparameters of the RANN—the number of hidden layers and their
neuron sizes.

Displacements along with air temperature related to a long-span steel arch bridge,
have been used to verify the capability and performance of the proposed method. The
results have demonstrated that the RANN-BHO-based method is an effective and sim-
ple predictive tool, featuring reliable estimations in the presence of small datasets to be
exploited for the prediction of the structural health.

Author Contributions: Conceptualization, A.E. and B.B.; methodology, A.E., B.B., C.D.M. and
S.M.; software, A.E. and B.B.; validation, A.E. and B.B.; formal analysis, A.E., B.B., C.D.M. and
S.M.; investigation, A.E., B.B., C.D.M. and S.M.; resources, A.E. and B.B.; data curation, A.E. and
B.B.; writing—original draft preparation, A.E. and B.B.; writing—review and editing, A.E., B.B,,
C.D.M. and S.M,; visualization, A.E., B.B., C.D.M. and S.M.; supervision, C.D.M. and S.M.; project
administration, A.E., B.B., C.D.M. and S.M. All authors have read and agreed to the published version
of the manuscript.

Funding: This research has been partially funded by the European Space Agency (ESA) under
contract no. 4000132658/20/NL/MH/ac.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data is unavailable due to privacy or ethical restrictions.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no roles in
the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

1.  Limongelli, M.P; Gentile, C.; Biondini, E; di Prisco, M.; Ballio, F; Zonno, G.; Borlenghi, P.; Bianchi, S.; Capacci, L.; Anghi-
leri, M.; et al. Bridge structural monitoring: The Lombardia regional guidelines. Struct. Infrastruct. Eng. 2022, 1-24. [CrossRef]

2. Entezami, A.; Sarmadi, H.; Behkamal, B. Long-term health monitoring of concrete and steel bridges under large and missing data
by unsupervised meta learning. Eng. Struct. 2023, 279, 115616. [CrossRef]

3.  Entezami, A.; Sarmadi, H.; Behkamal, B.; De Michele, C. On continuous health monitoring of bridges under serious environmental
variability by an innovative multi-task unsupervised learning method. Struct. Infrastruct. Eng. 2023, 1-19. [CrossRef]

4. Lan, Y;Li, Z; Lin, W. A Time-Domain Signal Processing Algorithm for Data-Driven Drive-by Inspection Methods: An Experi-
mental Study. Materials 2023, 16, 2624. [CrossRef] [PubMed]

5. Torzoni, M.; Rosafalco, L.; Manzoni, A. A combined model-order reduction and deep learning approach for structural health
monitoring under varying operational and environmental conditions. Eng. Proc. 2020, 2, 94. [CrossRef]


https://doi.org/10.1080/15732479.2022.2107023
https://doi.org/10.1016/j.engstruct.2023.115616
https://doi.org/10.1080/15732479.2023.2166538
https://doi.org/10.3390/ma16072624
https://www.ncbi.nlm.nih.gov/pubmed/37048918
https://doi.org/10.3390/ecsa-7-08258

Eng. Proc. 2023, 58, 54 60f6

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

Sarmadi, H.; Entezami, A.; Salar, M.; De Michele, C. Bridge health monitoring in environmental variability by new clustering and
threshold estimation methods. J. Civ. Struct. Health Monit. 2021, 11, 629-644. [CrossRef]

Soleymani, A.; Jahangir, H.; Nehdi, M.L. Damage detection and monitoring in heritage masonry structures: Systematic review.
Constr. Build. Mater. 2023, 397, 132402. [CrossRef]

da Silva, S.; Figueiredo, E.; Moldovan, I. Damage Detection Approach for Bridges under Temperature Effects using Gaussian
Process Regression Trained with Hybrid Data. J. Bridge Eng. 2022, 27, 04022107. [CrossRef]

Ardani, S.; Eftekhar Azam, S.; Linzell, D.G. Bridge Health Monitoring Using Proper Orthogonal Decomposition and Transfer
Learning. Appl. Sci. 2023, 13, 1935. [CrossRef]

Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons Ltd.: Chichester, UK, 2013.
Entezami, A.; Arslan, A.N.; De Michele, C.; Behkamal, B. Online hybrid learning methods for real-time structural health
monitoring using remote sensing and small displacement data. Remote Sens. 2022, 14, 3357. [CrossRef]

Behkamal, B.; Entezami, A.; De Michele, C.; Arslan, A.N. Investigation of temperature effects into long-span bridges via hybrid
sensing and supervised regression models. Remote Sens. 2023, 15, 3503. [CrossRef]

Sarmadi, H.; Entezami, A.; Magalhaes, F. Unsupervised data normalization for continuous dynamic monitoring by an innovative
hybrid feature weighting-selection algorithm and natural nearest neighbor searching. Struct. Health Monit. 2023, 22, 4005-4026.
[CrossRef]

Zhang, C.; Mousavi, A.A.; Masri, S.E; Gholipour, G.; Yan, K,; Li, X. Vibration feature extraction using signal processing techniques
for structural health monitoring: A review. Mech. Syst. Sig. Process. 2022, 177, 109175. [CrossRef]

Daneshvar, M.H.; Sarmadi, H.; Yuen, K.-V. A locally unsupervised hybrid learning method for removing environmental effects
under different measurement periods. Meas. 2023, 208, 112465. [CrossRef]

Entezami, A.; Sarmadi, H.; Behkamal, B. A novel double-hybrid learning method for modal frequency-based damage assessment
of bridge structures under different environmental variation patterns. Mech. Syst. Sig. Process. 2023, 201, 110676. [CrossRef]
Figueiredo, E.; Brownjohn, J. Three decades of statistical pattern recognition paradigm for SHM of bridges. Struct. Health Monit.
2022, 21, 3018-3054. [CrossRef]

Akintunde, E.; Azam, S.E.; Linzell, D.G. Singular value decomposition and unsupervised machine learning for virtual strain
sensing: Application to an operational railway bridge. Structures 2023, 58, 105417. [CrossRef]

Lan, Y.; Zhang, Y.; Lin, W. Diagnosis algorithms for indirect bridge health monitoring via an optimized AdaBoost-linear SVM.
Eng. Struct. 2023, 275, 115239. [CrossRef]

Biondi, F.; Addabbo, P,; Ullo, S.L.; Clemente, C.; Orlando, D. Perspectives on the Structural Health Monitoring of Bridges by
Synthetic Aperture Radar. Remote Sens. 2020, 12, 3852. [CrossRef]

Farneti, E.; Cavalagli, N.; Costantini, M.; Trillo, F.; Minati, F; Venanzi, I.; Ubertini, F. A method for structural monitoring of
multispan bridges using satellite INSAR data with uncertainty quantification and its pre-collapse application to the Albiano-Magra
Bridge in Italy. Struct. Health Monit. 2023, 22, 353-371. [CrossRef]

Giordano, P.F.; Turksezer, Z.; Previtali, M.; Limongelli, M.P. Damage detection on a historic iron bridge using satellite DInNSAR
data. Struct. Health Monit. 2022, 21,2291-2311. [CrossRef]

Giordano, PF; Previtali, M.; Limongelli, M.P. Monitoring of a Metal Bridge Using DINSAR Data. In European Workshop on
Structural Health Monitoring; Springer: Cham, Switzerland, 2022. [CrossRef]

Gatti, F; Rosafalco, L.; Colombera, G.; Mariani, S.; Corigliano, A. Multi-storey shear type buildings under earthquake loading:
Adversarial learning-based prediction of the transient dynamics and damage classification. Soil Dyn. Earthquake Eng. 2023, 173,
108141. [CrossRef]

Torzoni, M.; Manzoni, A.; Mariani, S. Structural health monitoring of civil structures: A diagnostic framework powered by deep
metric learning. Comput. Struct. 2022, 271, 106858. [CrossRef]

Torzoni, M.; Rosafalco, L.; Manzoni, A.; Mariani, S.; Corigliano, A. SHM under varying environmental conditions: An approach
based on model order reduction and deep learning. Comput. Struct. 2022, 266, 106790. [CrossRef]

Hagan, M.T.; Demuth, H.B.; Beale, M.H.; De Jests, O. Neural Network Design; Martin Hagan: Lexington, KY, USA, 2014.

Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,
415, 295-316. [CrossRef]

Sarmadi, H. Investigation of machine learning methods for structural safety assessment under variability in data: Comparative
studies and new approaches. J. Perform. Constr. Facil. 2021, 35, 04021090. [CrossRef]

Qin, X.; Zhang, L.; Yang, M.; Luo, H.; Liao, M.; Ding, X. Mapping surface deformation and thermal dilation of arch bridges by
structure-driven multi-temporal DInSAR analysis. Remote Sens. Environ. 2018, 216, 71-90. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1007/s13349-021-00472-1
https://doi.org/10.1016/j.conbuildmat.2023.132402
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001949
https://doi.org/10.3390/app13031935
https://doi.org/10.3390/rs14143357
https://doi.org/10.3390/rs15143503
https://doi.org/10.1177/14759217231166116
https://doi.org/10.1016/j.ymssp.2022.109175
https://doi.org/10.1016/j.measurement.2023.112465
https://doi.org/10.1016/j.ymssp.2023.110676
https://doi.org/10.1177/14759217221075241
https://doi.org/10.1016/j.istruc.2023.105417
https://doi.org/10.1016/j.engstruct.2022.115239
https://doi.org/10.3390/rs12233852
https://doi.org/10.1177/14759217221083609
https://doi.org/10.1177/14759217211054350
https://doi.org/10.1007/978-3-031-07258-1_41
https://doi.org/10.1016/j.soildyn.2023.108141
https://doi.org/10.1016/j.compstruc.2022.106858
https://doi.org/10.1016/j.compstruc.2022.106790
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001664
https://doi.org/10.1016/j.rse.2018.06.032

	Introduction 
	Supervised Artificial Neural Network for Regression 
	Network Configuration 
	Model Tuning via Bayesian Hyperparameter Optimization 

	Method Performance Evaluation for a Steel Arch Bridge 
	Conclusions 
	References

