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Abstract: The binomial distribution is the probability distribution of the number of successes for
a sequence of n independent trials with success probability p. Efficiently generating binomial random
variates is important in many modeling and simulation applications, such as in medicine, risk
management, and fraud and anomaly detection, among others. A variety of algorithms exist for
generating binomial random variates. This paper concerns the algorithm chosen for ρµ, an open
source Java library for efficient randomization, which uses a hybrid of two existing binomial random
variate algorithms: the BTPE Algorithm (Binomial, Triangle, Parallelogram, Exponential) and the
inverse transform for cases that BTPE cannot handle. BTPE uses rejection sampling, and BTPE’s
authors originally provided an analytical formula for the expected number of iterations in terms
of n and p. That expression is complicated to interpret in practical contexts. I explore BTPE by
instrumenting ρµ’s implementation to empirically analyze its acceptance/rejection behavior to gain
further insights into its runtime performance. Although the number of iterations depends upon n
and p, my experiments show that the average number of iterations is always under two, and that the
average number of random uniform variates required to generate a single random binomial is under
four (two per iteration). Thus, when analyzing the runtime of a simulation algorithm that includes
steps generating random binomials, one can consider such steps to have a constant runtime.

Keywords: binomial; BTPE; inverse transform; modeling; open source; random variate; simulation

1. Introduction

The binomial distribution is the probability distribution of the number of successes
for a sequence of n independent Bernoulli trials with success probability p [1]. Binomial
random variates are important in many modeling and simulation [2] applications, such
as in medicine [3–6], risk management [7,8], fraud and anomaly detection [9], among
others [10], and many algorithms exist for their efficient generation [2,11–15].

The focus of this paper is on the algorithm chosen for generating binomial random
variates for the ρµ library [16]. The open source Java library ρµ [16] provides enhanced
random number generation atop what the Java API itself includes. Java 17 introduced
a hierarchy of random number generator interfaces and several new random number
generators, among other new randomization features [17]. The core functionality of ρµ is
provided through a hierarchy of wrapper classes, which corresponds with the hierarchy
of random number generator interfaces introduced in Java 17. In some cases, ρµ’s classes
override the behavior of Java’s random number generators with faster algorithms, such
as for random integers subject to a bound or generating random Gaussians, while in
other cases, ρµ adds functionality not built into the Java API’s classes, such as additional
distributions, i.e., the binomial, among others [16]. The ρµ library provides efficient
random number generation to other libraries, such as JavaPermutationTools [18] and
Chips-n-Salsa [19].
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Motivation: What is the computational cost to generate a random value from a bino-
mial distribution B(n, p)? Answering this question is important for analyses of algorithms
that rely upon binomial random variates. To generate binomial random variates, ρµ [16]
utilizes a combination of the BTPE Algorithm (Binomial, Triangle, Parallelogram, Expo-
nential) [11] and the inverse transform [11,15] for cases that cannot be handled by BTPE.
The runtime of the inverse transform is O(np) [11,15]. However, BTPE’s runtime does not
appear to grow in the same way, if at all. BTPE uses acceptance–rejection sampling [20].
BTPE’s authors originally provided an analytical formula for the expected number of
acceptance–rejection iterations in terms of n and p. Interpreting that expression is less than
practical. In order to further understand the computational efficiency of binomial random
variate generation, I instrumented ρµ’s implementation of BTPE to empirically analyze
its acceptance–rejection behavior to gain further insight into its runtime performance. Al-
though the number of iterations depends upon n and p, my experiments show that the
average number of iterations is always under two, and that the average number of uniform
random variates required to generate a single random binomial is under four. Thus, when
analyzing the runtime of a simulation algorithm that includes steps generating random
binomials, one can consider such steps to have a constant runtime.

I explain the experimental methodology in Section 2, and I present the results in
Section 3. The source code of the experiments, the raw and processed data, and the analysis
are available on GitHub. The source code for ρµ is also on GitHub. I conclude with a
discussion in Section 4.

2. Methods
2.1. Binomial Random Variate Generation

The ρµ library [16] generates binomial random variates primarily using BTPE [11],
falling back on the inverse transform [11,15] when np is small. BTPE divides the distribution
into four parts, using triangular functions in the middle and exponential functions in the
tails, and uses acceptance–rejection sampling [20]. For complete details of BTPE, which are
beyond the scope of this paper, I refer the reader to the article that introduced it [11].

2.2. Expected Acceptance–Rejection Iterations

To generate a random value from a binomial distribution B(n, p), each acceptance–rejection
iteration of BTPE generates two random values from U(0, 1), i.e., uniformly distributed
over the interval [0.0, 1.0). When they introduced BTPE, Kachitvichyanukul and Schmeiser
determined that the expected number of iterations of BTPE is [11]:(

n
M

)
rM(1− r)n−M

∫ ∞

−∞
t(x) dx, (1)

where r = min(p, 1− p), M = bnr + rc and t(x) is BTPE’s majorizing function (see [11] for
details of t(x)). Since each iteration generates two random uniform values from U(0, 1),
the expected number of uniform variates required by BTPE is thus:

2
(

n
M

)
rM(1− r)n−M

∫ ∞

−∞
t(x) dx. (2)

2.3. Empirical Methodology

It is not obvious whether Equations (1) and (2) grow with n, grow with np, grow with
nr, etc.? Furthermore, if so, how quickly? BTPE is fast. Despite being a 35-year-old algo-
rithm, it is one of the best available for all but the smallest np. I set out to empirically explore
the runtime behavior of BTPE to provide a practical perspective to Equations (1) and (2).

To accomplish this, I wrapped an instance of Java’s SPLITTABLERANDOM class, which
implements the splitmix [21] pseudorandom number generator, in order to instrument it to
count the number of calls to its NEXTDOUBLE() method, which generates uniform random
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floating-point values in the interval [0.0, 1.0). This wrapped random number generator is
then used as the source of randomness for ρµ’s implementation of BTPE.

I consider n ∈ {25, 26, . . . , 220}. BTPE is only relevant for nr ≥ 10. Thus, p ≥ 10
n . For

a given n, consider p ∈ { 10
n , 16

n , 32
n , . . . , 1

2 , . . . , n−32
n , n−16

n , n−10
n }. For each combination of n

and p, I use BTPE to generate 10,000 binomial random variates, and I compute the average
number of uniform variates per binomial, with 95% confidence intervals. I use Equation (2)
to predict the number of uniform variates for each case, and test significance with a t-test.

I used OpenJDK 17 on a Windows 10 PC with a 3.4 GHz AMD A10-5700 CPU and
8 GB RAM. The experiments used ρµ 3.1.1. The source code for the experiments is on
GitHub at https://github.com/cicirello/btpe-iterations (accessed on 8 August 2023), as
well as for ρµ at https://github.com/cicirello/rho-mu (accessed on 8 August 2023).

3. Results

Tables 1–4 show the results for n ∈ {25, 210, 215, 220}. These were chosen as rep-
resentative cases. The raw and processed data for all cases are available on GitHub at
https://github.com/cicirello/btpe-iterations (accessed on 8 August 2023). The empirical
results confirm the analytical prediction of Equation (2). For all cases, there is no significant
difference between the analytical prediction and the empirically computed means. t-test
p-values are above 0.05 in almost all cases (well above in most cases). The small number of
cases where the t-test p-values are less than 0.05 are explained by random chance. Due to
random chance alone, at level 0.05, we should expect this for approximately 5% of cases.
This occurred in 3 of the 72 cases represented in the tables (approximately 4% of cases).

Across all cases, the analytical prediction from Equation (2) indicates a maximum
expected number of uniform variates of approximately 3.84 (n = 32 and p = 0.3125). The
empirical maximum mean was 3.84 and the minimum was 2.25. Thus, although the average
number of uniform variates needed by BTPE to generate one binomial variate fluctuates
with n and p, it remains less than four even for very large n.

Table 1. Average number of calls to U(0, 1) by ρµ’s BTPE implementation for n = 1,048,576.

p ρµ Mean Predicted t-Test p-Value

0.0000095367 3.81± 0.051 3.80 0.74
0.0000152588 3.42± 0.043 3.45 0.21
0.0000305176 2.99± 0.034 2.94 0.01
0.0000610352 2.60± 0.025 2.63 0.06
0.0001220703 2.48± 0.021 2.49 0.54
0.0002441406 2.35± 0.018 2.33 0.17
0.0004882812 2.29± 0.016 2.30 0.41
0.0009765625 2.26± 0.015 2.26 0.95
0.001953125 2.25± 0.015 2.26 0.48
0.00390625 2.27± 0.015 2.27 0.90
0.0078125 2.27± 0.015 2.28 0.27
0.015625 2.29± 0.016 2.29 0.61
0.03125 2.30± 0.016 2.30 0.65
0.0625 2.29± 0.016 2.30 0.17
0.125 2.29± 0.016 2.31 0.06
0.25 2.30± 0.016 2.31 0.24

https://github.com/cicirello/btpe-iterations
https://github.com/cicirello/rho-mu
https://github.com/cicirello/btpe-iterations
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Table 1. Cont.

p ρµ Mean Predicted t-Test p-Value

0.5 2.31± 0.017 2.31 0.58
0.75 2.31± 0.016 2.31 0.60
0.875 2.31± 0.016 2.31 0.87

0.9375 2.30± 0.016 2.30 0.75
0.96875 2.29± 0.016 2.30 0.57
0.984375 2.28± 0.016 2.29 0.10

0.9921875 2.27± 0.015 2.28 0.29
0.99609375 2.27± 0.015 2.27 0.94

0.998046875 2.26± 0.015 2.26 0.58
0.9990234375 2.25± 0.015 2.26 0.47
0.9995117188 2.29± 0.016 2.30 0.63
0.9997558594 2.33± 0.017 2.33 0.62
0.9998779297 2.48± 0.021 2.49 0.28
0.9999389648 2.63± 0.025 2.63 0.73
0.9999694824 2.95± 0.033 2.94 0.78
0.9999847412 3.44± 0.043 3.45 0.75
0.9999904633 3.84± 0.053 3.80 0.17

Table 2. Average number of calls to U(0, 1) by ρµ’s BTPE implementation for n = 32,768.

p ρµ Mean Predicted t-Test p-Value

0.0003051758 3.81± 0.052 3.80 0.73
0.0004882812 3.48± 0.044 3.45 0.13
0.0009765625 2.96± 0.033 2.94 0.50
0.001953125 2.62± 0.025 2.63 0.51
0.00390625 2.48± 0.021 2.49 0.15
0.0078125 2.34± 0.017 2.34 0.81
0.015625 2.27± 0.015 2.27 0.55
0.03125 2.26± 0.015 2.26 0.92
0.0625 2.25± 0.015 2.26 0.57
0.125 2.28± 0.015 2.28 0.43
0.25 2.29± 0.016 2.28 0.59
0.5 2.29± 0.016 2.30 0.08

0.75 2.30± 0.016 2.28 0.16
0.875 2.27± 0.016 2.28 0.62

0.9375 2.26± 0.015 2.26 0.76
0.96875 2.26± 0.015 2.26 0.53

0.984375 2.28± 0.015 2.27 0.15
0.9921875 2.32± 0.017 2.34 0.04
0.99609375 2.48± 0.021 2.49 0.22

0.998046875 2.62± 0.025 2.63 0.69
0.9990234375 2.98± 0.034 2.94 0.08
0.9995117188 3.45± 0.044 3.45 0.81
0.9996948242 3.78± 0.051 3.80 0.53
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Table 3. Average number of calls to U(0, 1) by ρµ’s BTPE implementation for n = 1024.

p ρµ Mean Predicted t-Test p-Value

0.009765625 3.82± 0.051 3.80 0.42
0.015625 3.49± 0.045 3.46 0.16
0.03125 2.94± 0.033 2.97 0.06
0.0625 2.70± 0.027 2.69 0.53
0.125 2.52± 0.022 2.52 0.38
0.25 2.36± 0.018 2.34 0.09
0.5 2.30± 0.016 2.32 0.11

0.75 2.35± 0.018 2.34 0.36
0.875 2.54± 0.022 2.52 0.30

0.9375 2.67± 0.026 2.69 0.14
0.96875 3.00± 0.034 2.97 0.05
0.984375 3.41± 0.043 3.46 0.05

0.990234375 3.79± 0.051 3.80 0.74

Table 4. Average number of calls to U(0, 1) by ρµ’s BTPE implementation for n = 32.

p ρµ Mean Predicted t-Test p-Value

0.3125 3.83± 0.052 3.84 0.76
0.5 3.58± 0.046 3.60 0.46

0.6875 3.78± 0.050 3.84 0.03

4. Discussion and Conclusions

Modeling and simulation applications in many domains require efficiently generating
binomial random variates. The runtime of some algorithms for such generation grows with
n or with np. For example, the average runtime of the inverse transform approach is O(np).
Other algorithms are quite fast even for large np, such as BTPE. BTPE’s runtime does vary
based on n and p, as analyzed by its authors. However, in the empirical investigation in
this paper, I complement the existing analytical results by showing that the average number
of acceptance–rejection iterations is always less than two, even for large n and np, and that
the average number of uniform variates needed to generate a single binomial is less than
four. Thus, if generating a binomial random variate is a step of another algorithm, such
steps can be treated as O(1) in average case runtime analyses.

One limitation of this empirical study, as well as in the analytical expression of
Equation (2), is that it considers the average case. The acceptance–rejection sampling
cycle of BTPE can potentially run for longer. For example, during the experiments, the
maximum number of uniform variates generated while producing a single binomial was
38 (19 iterations), compared to the average of less than 4. Longer runs of BTPE are not
common. For example, during this study, 2.88 million binomial random variates were
generated, and longer runs of BTPE were relatively rare occurrences. However, if you are
analyzing the algorithmic complexity of an algorithm that uses BTPE as a subroutine, this
result limits you to an average case analysis of that algorithm, rather than a worst case
analysis. We may explore in the future whether it may be possible to compute an upper
bound on the number of acceptance–rejection sampling iterations to resolve this limitation.
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Abbreviation
The following abbreviation is used in this manuscript:
BTPE Binomial, Triangle, Parallelogram, Exponential
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