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Abstract: This article presents a comprehensive review of control approaches for industrial robotic
manipulators, focusing on research conducted from 2020 onwards. The efficient functioning of
robotic arms and successful task completion necessitate effective control strategies. Addressing real-
world challenges, such as dynamic system variations due to environmental changes and unknown
disturbances, remains crucial. To tackle these challenges, robust control strategies, including PID, H∞
and Model Predictive Control, are thoroughly surveyed. Commercially employed trajectory-planning
techniques for manipulators are also extensively discussed. This paper concludes by providing
valuable insights into prospective areas for future research, with the aim of enhancing the capabilities
and performance of control strategies for industrial robotic manipulators. This study offers valuable
knowledge to advance the field of robotic automation in Industry 4.0, fostering the development of
efficient and intelligent manufacturing processes.
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1. Introduction

Robotic arms play a pivotal role in the modern industrial landscape. Being an impor-
tant component of Industry 4.0, they are of great importance in various industries, and
their integration is necessary to realize the concept of a smart factory. The significance
of robotic arms is paramount, and their control strategies hold even greater importance
as they ensure their proper functioning. There are many studies that have focused on
the control of industrial robotic arms in the past. Some delved into the control strate-
gies for a specific industrial application such as welding [1], assembly [2] or material
handling [3], while others classified control strategies based on different criteria, such as
kinematic configuration, end-effector type and payload capacity. Additionally, there are
studies which extensively discussed one aspect of control in robotic arms, such as trajectory
control [4]. In recent years, there has been a rapid increase in the use of intelligent control
strategies for industrial robotic arms [5] driven by the need for adaptability to dynamic
environments, increased flexibility to perform various tasks, the ability to handle unknown
disturbances and ensuring safety. This review explores control strategies for industrial
robotic manipulators, focusing on research published from 2020 onwards. This review
discusses robust control strategies and highlights different aspects of control, including
trajectory planning, trajectory tracking, convergence and stability, while considering the
need for adaptability and flexibility in facing challenges like environmental changes and
unknown disturbances. This study offers valuable knowledge to advance the field of
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robotic automation in Industry 4.0, fostering the development of efficient and intelligent
control strategies for manufacturing processes.

Different control strategies can be used for robotic manipulators; this choice depends
on the intended application, operating conditions and other application specific require-
ments. For instance, classical PID and a linear MPC controller are compared in [6] using a
five-DOF RV-2AJ Mitsubishi robotic arm for three distinctively defined reference trajecto-
ries. The study argues that MPC is faster and requires less control effort, whereas PID has
greater precision. It is also worth mentioning that the choice of controller, to some extent,
is dictated by the dynamics of the system. In real-world scenarios, system dynamics can
vary due to changes in the environment and unknown disturbances. Therefore, robust
controllers are needed to handle uncertainties, parameter variations, external disturbances
and unmodeled dynamics.

Following the Introduction, the second section of this article highlights some robust
control strategies. Afterwards, this article explores trajectory-planning techniques for
robotic manipulators. Section 4 discusses trajectory-tracking methods, whereas conver-
gence and stability in controlling robotic manipulators is discussed in Section 5. Finally,
valuable insights into prospective areas for future research, with the aim of enhancing the
capabilities and performance of control strategies for industrial robotic manipulators, are
provided in Section 6. Section 7 concludes the article.

2. Robust Control

Robust controllers are designed to effectively maintain performance by handling
model uncertainties, parameter variations, external disturbances and unmodeled dynamics.
Control strategies lacking robustness often rely on accurate knowledge of system parame-
ters. However, in real-world scenarios, system dynamics can vary due to factors such as
environmental changes or unknown disturbances. As Ulusoy et al. [7] and Liu et al. [8]
used linear PID, ignoring coupled dynamics, their control strategy lacked robustness. The
authors in [9], on the other hand, proposed an adaptive neural control based on a simple
structured PID-like control. The authors used radial basis function neural networks to
estimate uncertainties and determine PID gains through a direct Lyapunov method. The
proposed method can deal with the nonlinear dynamics of robotic systems and model
uncertainty. Furthermore, the proposed methodology demonstrates robustness against
external disturbances with the ability to achieve auto-tuning of the PID gains. Another
application of robust algorithms can be found in [10], in which an H∞ controller and
a fuzzy logic (FL) compensator work together to achieve robustness. This strategy can
handle unmodeled dynamics and resolve parametric uncertainty but requires a high level
of mathematical ability due to its computational complexity. Similarly, Parkash et al. [11]
proposed an adaptive backstepping neural controller for a robot manipulator with dynamic
uncertainties and demonstrated the controller performance using a four-DOF Barrett WAM
Arm. Carlucho et al. [12] developed an adaptive controller based on data-driven MPC,
which utilizes a model derived using an NN, considering environmental disturbances while
controlling a manipulator working with unknown payloads. Similarly, Kang et al. [13]
worked on NN-based MPC of a two-DOF robotic manipulator with unknown dynamics
and input constraints to improve the model estimation accuracy. Taken together, these
studies suggest that robust controllers offer effective solutions to the challenges posed
by uncertainties, disturbances and unmodeled dynamics and overall improve control
performance in real-world scenarios.

3. Trajectory Planning

Trajectory planning is a crucial aspect of robotic systems which involves determining
the optimal path and motion profiles to be followed in order to accomplish a specific
task. The need for trajectory planning arises from the complexity of robotic tasks and the
desire for precise and efficient execution. By planning a well-defined trajectory, robots can
navigate through their workspace with improved accuracy, safety and optimized motion.
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In this regard, Song [14] proposed a manipulator trajectory-planning method based on
a radial basis function (RBF) neural network and implemented it in a six-DOF robotic arm,
showing that the proposed method can improve trajectory tracking accuracy and motion
efficiency. However, ref. [15] proposed a soft actor–critic (SAC)-based deep reinforcement
learning path-planning algorithm for multi-arm manipulators with periodically moving
obstacles. Neural networks estimate the future location of moving obstacles in SAC. Further,
to improve estimation for periodic signals, Prianto et al. [15] suggested other deep learning
algorithms like RNN, whereas for optimized trajectory, Zhu [16] used a combination
of a simulated annealing algorithm and neural network learning while employing the
PID control algorithm to reduce errors. A neural network and PLC control system were
combined to optimize the servo motor.

As far as collision avoidance is concerned, Tamizi [17] developed a Path-Planning and
Collision-Checking Network (PPCNet) framework based on end-to-end learning that uses
deep neural networks to find a real-time solution for path planning and collision checking.
The Kinova Gen3 robot was used to examine the proposed framework. The neural network
and PLC control system were combined to optimize the servo motor. However, challenges
are posed by slowness and complexity in path planning. To address this issue, Abdi [18]
proposed an approach based on Q-learning and neural networks. This is a hybrid path-
planning method which uses KNN to determine the location of the starting point, obstacle
and target. Then, the Q-learning algorithm is used to reach the target cell and avoid
obstacles. Finally, a trained neural network is used to obtain the joint angles of the robotic
arms. These diverse trajectory-planning methods are important for the intelligent operation
of autonomous robotic arms. Overall, it can be inferred that the ongoing evolution of this
field, in which intelligent algorithms and autonomous decision making are incorporated
for path planning, is revolutionizing various industries and enabling robots to complete
complex tasks with greater precision, efficiency and speed without any human intervention.

4. Trajectory Tracking

After the trajectory is planned, next comes trajectory tracking. Trajectory tracking
focuses on controlling the robot’s motion in real time to closely follow the predefined or
planned trajectory. Not all control systems have both trajectory planning and trajectory
tracking. It depends on the requirements and application. However, both can be incor-
porated to achieve robust, safe, optimized and accurate motion control. Nubert et al. [19]
combined robust MPC and NN control to achieve safe and fast tracking of a KUKA LBR4+
robotic arm, whereas Sun [20] achieved an excellent position tracking performance under
nonlinear interference by developing a Friction Compensation Controller (FCC) that inte-
grated Time Delay Estimation (TDE) and an Adaptive Fuzzy Logic System (AFLS). Wang
et al. [21], on the other hand, used a Baxter robot to validate whether an RBF-NN-based
controller could track the reproduced motion accurately. Similarly, for a satisfactory track-
ing performance with superior anti-disturbance capability, Cheng et al. [22] proposed a
generalized saturated adaptive controller based on backstepping control, singular pertur-
bation decoupling and neural networks. The proposed method was successfully tested on
a two-DOF flexible-joint robot with bounded torque inputs.

For position control, ref. [23] investigated four different control strategies for a two-
DOF robotic arm and successfully applied them using an Alternating Current Brushless
Permanent Magnet Motor (ACBPMM) and a three-phase multilevel inverter with 27 levels
of voltage per phase to drive the first link. This study provided a base for position control of
the robotic arm with multiple DOFs using AC motors and multilevel inverters. Nonetheless,
the challenge of tracking error arises when there are discrepancies between the desired
trajectory and the actual trajectory followed by a system. To that end, Hu et al. [24] proposed
dynamic surface control (DSC) based on a nonlinear disturbance observer (NDO) with an
interval type 2 fuzzy neural network (IT2FNN), which performed better than the adaptive
DSC with a neural network (NN) approximator and type 1 fuzzy (T1F) approximator in
converging the tracking error to a sufficiently small value. Furthermore, in order to improve
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trajectory tracking accuracy, an adaptive fuzzy sliding mode control (AFSMC) was used
in [25], which allowed the researchers to compensate for parametric uncertainties, bounded
external disturbances and constraint uncertainties. Meanwhile, Quynh [26] investigated
using a Wavelet Neural Network (WNN) with adaptive fuzzy sliding model control and
the Lyapunov method to train a two-DOF robotic arm with high tracking accuracy. In light
of these advances, it is evident that trajectory tracking is crucial for industrial robotic arms,
where precise and accurate task execution is required while ensuring high-quality output
and reducing errors in manufacturing processes.

5. Convergence and Stability

Stability in control systems refers to the property of a system to remain bounded and
achieve a balanced state over time, even in the presence of disturbances or uncertainties.
Convergence, on the other hand, is the behavior of a system in which certain variables
or parameters tend to approach a specific value or reach a desired goal. In this context,
Trans et al. [27] used the radial basis function neural network (RBSFNN) along with sliding
mode control using a neural network (SMC-NN) and the Lyapunov training method for a
two-joint robotic manipulator which can guarantee finite-time convergence and stability.
Similarly, ref. [28] used radial basis function neural network (RBFNN) control for three-link
industrial robot manipulators under various environments to guarantee the stability of the
system and the convergence of the weight adaptation. These studies point to the fact that
advanced techniques like neural networks and sliding mode control contribute to stability
and convergence, enhancing performance, reliability, efficiency and safety in intelligent
industrial operations under diverse environments.

6. Future Directions

In light of recent research, it is evident that these approaches provide robust control
and can deal with model uncertainties, environmental changes and unknown disturbances.
However, future research is still required to continually advance control systems for in-
dustrial robotic manipulators with regard to robustness, intelligence and automation. This
section discusses different areas which can be explored in future research to contribute to
enhancing the field:

• Current robust control strategies often rely on offline tuning of control parameters or
the assumption of known system dynamics. Future research could focus on developing
online adaptive control algorithms that can continuously adapt the control parameters
and adjust the control strategy based on real-time measurements and system feedback.

• Development of advanced prognosis health management systems for industrial robotic
arms based on real-time monitoring and adaptive control techniques [29].

• The use of multiple robots in collaborative tasks is increasing to enhance productivity
and flexibility [30]. Thus, a need for effective coordination strategies has arisen. Future
research could explore techniques that consider the coordination and cooperation of
multiple robots. This could involve developing control algorithms for collision-free
motion and communication protocols.

• Soft robotics is another emerging area. Future research could focus on integrating
robust control, trajectory-planning and trajectory-tracking algorithms for soft robotics
to achieve more adaptive and compliant robot behavior. This could lead to advances in
fields such as robot-assisted surgery, human–robot collaboration and assistive robotics.

7. Conclusions

In this article, the significance of control strategies for industrial robotic manipula-
tors in the context of the modern industrial landscape was discussed. The importance
of using robust control methods to handle uncertainties, parameter variations, external
disturbances and unmodeled dynamics was highlighted. Additionally, works on trajectory-
planning techniques to ensure accurate and efficient execution of robotic tasks, including
neural networks, deep reinforcement learning and optimization algorithms, were reviewed.



Eng. Proc. 2023, 56, 75 5 of 6

Trajectory-tracking methods, such as robust MPC, adaptive control and neural-network-
based controllers, were also mentioned in relation to achieving precise motion control and
position tracking. This review also touched upon the topics of convergence and stability
and concluded by providing valuable insights into prospective areas for future research.
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