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Abstract: The mechanical properties of most asphalt binders may not be sufficient to withstand
the increased load requirements experienced by flexible pavement in practice, especially in regions
notorious for severe climatic conditions. This necessitated the need to often enhance the properties
of asphalt binder so that it can counteract most pavement distresses, such as rutting and moisture
susceptibility. In this study, economical industrial waste plastic dust (IWPD) from high-density
polyethylene (HDPE) origin was used to modify base bitumen with a penetration grade of 60/70,
and its effect on the moisture susceptibility and rutting potential of hot-mix asphalt (HMA) was
investigated thereafter. The IWPD was added at varying percentages (3%, 6%, and 9%) to the base
bitumen by weight of the optimum bitumen content. Afterward, Marshall stability and indirect
tensile strength ratio were performed on HMA samples produced with the IWPD-modified bitumen
blends to evaluate, respectively, its rutting and moisture susceptibility. Based on the results obtained
from the analysis, it was found that the modified blends of bitumen enhance the properties of the
conventional bitumen. More importantly, the modified blend of bitumen with 6% IWPD content
gave optimal results in terms of the increment of rutting resistance and improvement of moisture
susceptibility of HMA.

Keywords: flexible pavement; industrial waste plastic dust; hot-mix asphalt; moisture susceptibility;
rutting; tensile strength ratio

1. Introduction

Proper asphalt mixture design is paramount for ensuring the durability as well as
the stability of flexible pavements, especially considering the increasing traffic volumes
resulting from population growth. Continuous exposure to heavy traffic and repetitive
loading has a detrimental effect on the rheological properties and overall performance
of flexible pavements. Bitumen, an essential component of asphalt concrete in flexible
pavements, acts as the binding material and consists of hydrocarbons that significantly
influence the performance of bituminous pavements [1]. Hence, the use of poorly char-
acterized binder mixtures in hot-mix asphalt (HMA) exposes the flexible pavement to
various distresses that can compromise its integrity [1,2]. These inadequately characterized
binders contribute to several types of pavement failures, with fatigue cracking, rutting, and
moisture susceptibility being extensively studied, particularly in Nigeria [3].

Rutting is a longitudinal surface depression that occurs along the wheel paths in most
flexible pavements. It is an incremental permanent strain or plastic deformation that is
generated in poorly designed and constructed flexible pavement during repetitive traffic
loading [4–6]. It is followed subsequently by conspicuous upheaval along the sides of
the rut, fatigue cracking, and surface loss, hence decreasing pavement life [7,8]. Moisture
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susceptibility, which is associated with the presence of moisture in the pavement, affects
asphalt mixture strength and accelerates several modes of failure such as rutting, raveling,
stripping, bleeding, and cracking in asphalt pavement [9], which, in turn, escalate main-
tenance costs [8,10,11]. Strategies to improve this failure mode, involve the incorporation
of modifiers into the asphalt binders [12–15]. While most polymer-modified binders are
known to improve performance, they are expensive and hard to find, which makes the
production cost of the binders modified with them to be high [16,17], and availability
challenges have led to the exploration of industrial-based modifiers like polymer-based
waste [18–21].

Industrial waste, a significant global concern, prompts the exploration of sustainable
solutions. In Nigeria, polymer-based industrial waste poses disposal challenges due
to depleting landfills amid urbanization [22]. Incorporating such waste into pavement
construction can alleviate environmental impacts and resource depletion [23,24]. This study
focuses on utilizing polymer-based industrial waste to improve asphalt mixture properties,
particularly using high-density polyethylene (HDPE) waste. HDPE-modified asphalt has
demonstrated enhanced rutting resistance and moisture susceptibility mitigation [18].

This research assesses the potential of industrial waste plastic dust (IWPD), generated
during HDPE plastic manufacturing, to enhance bitumen properties, focusing on rutting
resistance and moisture susceptibility.

2. Materials and Method
2.1. Materials

This study used 60/70 penetration grade bitumen from Ringardas Nigeria Limited.
Its properties are presented in Table 1. Crushed granite stone and dust obtained from a
quarry in Akamkpa, Cross River State, were utilized as coarse aggregate and mineral fillers,
respectively, while natural sand obtained from a river in Ikot Osom, Akwa Ibom State, was
used as fine aggregate. Figure 1 and Table 2 display, respectively, the gradation curve and
the physical properties of the aggregates used in this study. The physical properties were
all determined based on American Society for Testing and Materials standards procedures.

Table 1. Physical properties of base bitumen.

Test 60/70 Value Standard Requirement

Penetration at 25 ◦C (0.1 mm) 67 60–70
Softening point (◦C) 48.5 min 46
Brookfield rotational viscosity at 135 ◦C (Pa·s) 0.56 <3000 mPa·s
Flash Point (◦C) 250 min 230
Specific gravity (g/cm3) 1.02 1.01–1.06
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Table 2. Physical properties of aggregate.

Aggregate Test Value Standard Requirement

Coarse aggregate
Water absorption 1.99 ≤2%
Loss Angeles abrasion 23.9 <30%
Apparent specific gravity 2.66 2.6–2.9

Fine aggregate Apparent specific gravity 2.61 2.5–2.8
Water absorption 2.78 ≤2%

Filler Apparent specific gravity 2.70 2.5–2.8

HDPE plastics from Dakkada in dust form were used as IWPD. It was sourced from a
plastic company in Akwa Ibom, Nigeria, that produces HDPE household items. See Table 3
for IWPD properties and Figure 2 for its appearance.

Table 3. Physical properties of IWPD.

Test Value Standard Requirement Standard Adopted

Melting Temperature 130 ◦C 255 ◦C ASTM D3418 [25]
Density 0.9439 kg/m3 0.88–0.96 kg/m3 ASTM D4883 [26]
Melt Flow Index 19.8 g/10 min - ASTM D1238 [27]
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2.2. Method
2.2.1. Preparation of IWPD—Modified Blend

Modified bitumen blends were produced by thoroughly mixing base bitumen and
IWPD in a wet process in a high-shearing mixer at 160 ◦C and 3800 rpm for 40 min, with
IWPD added at 3%, 6%, and 9% of optimal bitumen content of 5.35%

2.2.2. Indirect Tensile Strength and Tensile Strength Ratio

This study employed the indirect tensile strength (ITS) test, assessing asphalt mixture
tensile properties linked to rutting and cracking using ASTM D6931 [28] and AASHTO-
T283 [29] procedures. Six cylindrical specimens each for unmodified and modified blends
were prepared, with three of the specimens conditioned as described in the AASHTO-
T283 [29]. Specimens underwent compressive force application along the diametrical plane
at a stable deformation rate until failure, calculating ITS using Equation (1) for both types.

ITS =
2Ls

πtsds
(1)

where ITS is (Pa), Ls represents the maximum applied load on specimen (N), ts represents
the thickness of specimen (mm), and ds = diameter of specimen (mm).
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Tensile strength ratio (TSR), assessing moisture damage resistance, was calculated us-
ing the ratio of conditioned (wet) to unconditioned (dry) indirect tensile strength according
to Equation (2).

TSR =
ITSwet

ITSdry
(2)

where TSR is the tensile strength ratio, ITSwet is the indirect tensile strength at wet condi-
tions, and ITSdry is the tensile strength at dry conditions.

3. Result and Discussion
Tensile Strength Ratio

Figure 3 displays unconditioned and conditioned ITS for modified and unmodified
bitumen blends. Unconditioned and conditioned ITS increase with higher IWPD content.
The unmodified asphalt mixture had dried and wet ITS of 0.9 MPa and 0.65 MPa. Figure 4
shows the TSR results, revealing rising TSR with increased IWPD content. Blends with 6%
and 9% IWPD achieved the highest TSR of 81%, indicating significant moisture damage
resistance, meeting super-pave standards. Beyond 6% IWPD, marginal TSR differences
are observed, attributed to increased viscosity and improved asphalt-aggregate adhesion,
reducing moisture susceptibility [30].
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4. Conclusions

Improvement in asphalt mixtures to resist pavement distresses like rutting and mois-
ture susceptibility can be achieved using industrial waste plastic dust as a bitumen modifier.
In the present study, the following conclusions can be drawn:

1. Based on tensile strength ratio analysis, the modification of bitumen with IWPD
improved moisture susceptibility. However, beyond 6% IWPD, there might be no sig-
nificant improvement in moisture susceptibility. Therefore, 6% modification content
may be deemed desirable.

2. The modification of bitumen with IWPD led to an improvement in the rutting potential
of the asphalt mixture. Although at content beyond 6%, resistance to rutting might be
reduced. Hence, like in the case of moisture susceptibility, the optimal performance of
IWPD for rutting improvement might be effective at 6% by weight of bitumen.
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