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Abstract: The addition of copper bromide to the perovskite precursor solutions increased the conver-
sion efficiencies of the devices. On the other hand, the short-circuit current densities decreased with
an increase in the added amounts of copper (Cu). From first-principles calculations, the partial substi-
tution of lead with Cu resulted in the formation of a Cu d orbital energy level in the forbidden band,
which worked as a recombination center, causing the generated carriers to disappear. Experiments
and calculations show the effects of Cu substitution on the electronic structures and the ability of the
addition of Cu compounds to further improve the device performance.

Keywords: copper; first-principles calculations; perovskite; solar cell

1. Introduction

Perovskite materials with excellent photovoltaic properties have been studied us-
ing a wide variety of approaches, including first-principles calculations [1–5], machine
learning [6–10], and device characteristics simulations [11–15], in addition to experi-
ments [16–22]. Although the conversion efficiency and stability of perovskite solar cells
are gradually improving, most perovskite materials with excellent performance contain
toxic Pb. In order to reduce the perovskite solar cells’ toxicity for commercialization, al-
ternative elements to Pb are being investigated [23–29]. In previous studies investigating
the effect of Cu compound addition in methylammonium (MA)- or Cs-based perovskites,
it was reported that the additions of small amounts of Cu to the perovskite precursor
solution increased the grain size and improved the film quality, which contributed to
improved device properties [30–34]. Furthermore, the combination of Cu with alkali
metals or organic cations more stable than MA improved the conversion efficiency and
stability of perovskite solar cells [35–38].

In this study, the effects of the addition of Cu compounds to the perovskite precursor
solution and the substitution of Pb with Cu on the device properties and electronic structure
were investigated [39]. The amount of Cu added was varied in the range of 0, 1, 2, 3, and
12.5%, and the current–voltage characterization and X-ray diffraction measurements were
performed. In addition, first-principles calculations were performed to determine the effect
of Cu substitution in methylammonium-based perovskite crystals from the band structure
and partial density of states.

2. Device Fabrication and Computational Conditions

The structure of the fabricated perovskite solar cell is fluorine-doped tin oxide glass/
compact TiO2/mesoporous TiO2/CH3NH3PbI3/spiro-OMeTAD/Au. CuBr2 was used as
the Cu compound to be added to the perovskite precursor solution, with 0% Cu as the
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standard device and different Cu additions in the range of 1, 2, 3, and 12.5%. The details of
the experimental methods are described in the previous papers [35].

A 2 × 2 × 2 supercell was built, and one of the eight B-sites was substituted with
Cu to produce a structural model of MAPb0.875Cu0.125I3. The energy gap and carrier
effective mass were calculated from the band structure, and the information on orbitals was
obtained from the partial density of states (pDOS). The details of the calculation method
are described in the previous papers [39].

3. Results and Discussion

Figure 1 shows the cell parameters as a function of the amount of Cu compound
added to the perovskite precursor solution. Table 1 shows the values of the cell parameters
obtained from the current–voltage characterization. The highest open circuit voltage (VOC)
and fill factor (FF) were obtained when 2% Cu was added, and the conversion efficiency
was higher than that of standard devices. The short-circuit current density (JSC) tended
to decrease with an increase in the Cu addition, and the conversion efficiency decreased
compared to the standard device when the Cu content exceeded 2%.
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Figure 1. (a) JSC, (b) VOC, (c) FF, and (d) η values as a function of Cu2+ doping ratio.
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Table 1. Device properties of perovskite solar cells.

Cu2+ JSC VOC FF RS RSh η ηave Eg
(%) (mA cm−2) (V) (Ω cm2) (Ω cm2) (%) (%) (eV)

0 21.6 0.879 0.657 4.04 1664 12.5 10.4 1.55
1 20.9 0.898 0.681 3.49 1526 12.8 11.6 1.55
2 20.4 0.919 0.701 3.03 1507 13.1 11.7 1.56
3 20.2 0.892 0.638 4.85 1213 11.5 10.5 1.56

12.5 14.3 0.870 0.591 5.07 621 7.33 6.07 1.60

Table 2 shows the results of the X-ray diffraction pattern analysis. The crystallite size
increased with the addition of Cu to the precursor solution, with 2% Cu showing the highest
conversion efficiency and the highest perovskite (100) plane orientation. The increase in
the lattice parameter with the addition of small amounts of Cu was attributed to the lattice
distortion due to Cu substitution. For 12.5% Cu, the ionic radius of Cu is smaller than that
of Pb; thus, the lattice shrank as more Cu was incorporated into the perovskite crystals.

Table 2. Parameters obtained from X-ray diffraction measurements.

Cu2+ I100/I210 Lattice Parameter Crystallite Size
(%) (Å) (Å)

0 3.4 6.267(0) 394
1 3.7 6.269(1) 549
2 4.6 6.268(0) 663
3 4.2 6.268(1) 548

12.5 2.2 6.243(0) 625

First-principles calculations were performed to investigate the cause of the decrease
in JSC with an increase in the Cu addition. Figure 2 shows the calculated band structure
and density of partial states. Table 3 shows the values of the parameters obtained from
the first-principles calculations. From Figure 2c, the valence and conduction bands are
composed of I p and Pb p orbitals, respectively. When Pb is partially substituted by Cu, the
band gap decreases due to the lower energy of the Pb p orbital. Furthermore, an energy
level of the Cu d orbital was formed in the forbidden band. Considering the experimental
results, the energy level of the Cu d orbital worked as a defect level, causing the loss of the
generated carriers and the reduction in the JSC. In the absence of Cu, electrons are excited
from the I p orbital to the Pb p orbital. In the presence of Cu, electrons can be excited from
the I p orbital to the Cu d or Pb p orbital, resulting in two patterns of excitation processes.
Despite the increase in the excitation probability, the decrease in device properties with an
increase in the Cu addition means that it is difficult to extract electrons excited from the I p
orbital and trapped in the Cu d orbital as charge carriers. Experimental and computational
results indicate that the Cu substitution has a negative effect on the electronic structure
and that the defect levels formed in the forbidden bands reduce the JSC. Therefore, the
enhancement of device properties by the addition of Cu compounds to the precursor
solution is attributed to improvements in the microstructure of the perovskite film, such as
an increase in crystallite size and perovskite crystal (100) plane orientation.
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Figure 2. (a,b) Calculated band structures and (c,d) DOS of MAPbI3 and MAPb0.875Cu0.125I3, respec-
tively. The red arrows in the band structures indicate the band gaps. 
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Figure 2. (a,b) Calculated band structures and (c,d) DOS of MAPbI3 and MAPb0.875Cu0.125I3, respec-
tively. The red arrows in the band structures indicate the band gaps.

Table 3. Parameters obtained from first-principles calculations. The * means effective mass.

Model Total Energy Energy Gap me*/m0 mh*/m0 mh*/m0
Contribution
of Transition

Oscillator
Strength

(eV cell−1) (eV) Pb I Cu (%)

MAPbI3 −3495 1.480 0.229 0.208 − 16.7 0.0168
Cu 12.5% −3363 1.438 0.240 0.239 0.355 62.2 0.0287

4. Conclusions

The addition of 2% Cu to the perovskite precursor solution improved the VOC and
FF and enhanced the conversion efficiency of the device. The calculated band structure
and density of partial states indicate that the substitution of Pb for Cu has a negative
effect on the electronic structure, with the formation of Cu d orbital energy levels in the
forbidden band causing carrier recombination and lowering of the JSC. Therefore, it is
difficult to adopt Cu as a replacement element for Pb, but the addition of small amounts of
Cu compounds to the perovskite precursor solution was shown to contribute to the further
enhancement of device properties.
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