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Abstract: This paper represents a three-species food web model based on the connections between
susceptible prey, infected prey, and predator species. It is considered that in the absence of predator
species, prey species grow logistically. Predators consume susceptible and infected prey in the form
of Crowley–Martin and Beddington–DeAngelis functional responses. Also, infected prey consumes
susceptible prey in the form of Holling type II interactions. Here, prey refuge and harvesting in
prey with disease in a prey population are taken into consideration. Positiveness, boundedness, and
positive invariance are examined. All biologically feasible equilibrium points are investigated. The
local stability of positive equilibria and their global stability are analyzed by the suitable Lyapunov
functions. Finally, numerical solutions are analyzed according to our findings.

Keywords: eco-epidemiological model; Crowley–Martin functional response; Beddington–DeAngelis
form; stability; equilibrium

1. Introduction

In mathematical ecology, at the beginning of twentieth century, many plans were made
to statistically predict the existence and species of evolution. Certainly, the well-known
classical Lotka–Volterra model was the first major effort in this area in 1927.

A certain percentage of prey populations can receive some degree of protection from
nature by using its refuges. By lowering the risk of extinction from predation [1] and
dampening prey–predator oscillations [2], such refuges can aid in extending predator–
prey interactions. Studies in the literature reveal that refuges have both stabilizing [3]
and destabilizing effects [4] in the environment. The fundamental model of Kermack–
McKendric [5] on SIRS systems describes the diseases spread through contact. Mathematical
modeling of epidemics has emerged as an important area of study. A significant amount of
study has been conducted in this field [6–8].

One of the essential elements of predator–prey population modeling is a “Functional
Response”. Most functional responses, such as the Holling kinds, are labeled “prey-
dependent” since they are dependent on either the prey or the predator. In Crowley–Martin
functional responses, both the prey and the predator are considered. Prey handling along
with prey hunting are seen as two distinct and independent acts in Beddington–DeAngelis
functional responses. In this study, the functional responses of Crowley–Martin, Holling
type II, and Beddington–DeAngelis types are taken into account. The analysis of the
consequences of disease on prey refuge, and harvesting in prey in the predator–prey
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system is the primary focus of this study. Here, the boundedness and positive invariance of
the equilibrium points of this system, together with their local and global stabilities, have
all been investigated.

To the best of our knowledge, no researchers have investigated a three-species food
web eco-epidemiological model with multi-functional response. So, we explore the three-
species food web eco-epidemiological model with the Holling type II functional response
( Z(1−ψ)AB

p1+(1−ψ)A ), Beddington–DeAngelis functional response ( f1BC
(1+βB+γC ), and Crowley–Martin

functional response α1AC
(1+ηA)(1+µC) , as well as Hopf bifurcation as a result of this fact.

The main purpose is to investigate how disease affects a predator–prey relationship.
Section 2 deals with the mathematical formulation. Section 3 contains some of the pre-
liminary findings. Section 4 depicts the boundary equilibrium points and their stability.
Section 5 investigates the local stability of the interior equilibrium point E∗(a∗, b∗, c∗) and
determines its coexistence state. Section 6 shows the global stability for E∗. In addition, in
Section 7, we looked into Hopf bifurcation based on refuge ψ. In Section 8, all significant
conclusions are mathematically validated using MATLAB software. This research’s conclu-
sion and the biological implications of our findings are found in Section 9, which concludes
the work.

2. Mathematical Formulation of the Model

Models are developed for a predator–prey system with prey’s refuge and harvesting.

dA
dT = r1A(1 − A+B

K )− Z(1−ψ)AB
p1+(1−ψ)A − α1AC

(1+ηA)(1+µC) −H1E1A,
dB
dT = Z(1−ψ)AB

p1+(1−ψ)A − d1B − f1BC
(1+βB+γC) −H2E2B,

dC
dT = −d2C + nα1AC

(1+ηA)(1+µC) +
n f1BC

(1+βB+γC) ,

 (1)

by the conditions of non-negative terms A(0) = A0 ≥ 0,B(0) = B0 ≥ 0, and C(0) = C0 ≥
0. The detailed environmental illustrations of the parameters are given in Table 1.

Table 1. Environmental illustration of the system.

Parameters Environmental Illustration

A,B, C Susceptible prey, Infected prey, Predator
Z , r1, ψ Infection rate, Growth rate of prey,refuge of prey
K, η, E Carrying capacity, Predator’s handling time, harvesting effort

p1 and β Half-saturation constant among infected prey and predators
α1, n Rate of predation on susceptible prey, Conversion of prey to predators
γ, µ Magnitude of interference among predators by Crowley and Beddington

f1 Capture rate by predator on susceptible prey
d1 and d2 Death rate of infected prey and predators
H1, H2 Catchability coefficients of susceptible and infected prey

To reduce the system (1) parameters, it is appropriate to change the variables as
a = A

K , b = B
K , c = C

K , and the dimensionless time t = ZKT .
In non-dimensional form,

da
dt = ra(1 − a − b)− ab(1−ψ)

p+(1−ψ)a −
αac

(1+ηa)(1+µc) − h1a,
db
dt = (1−ψ)ab

p+(1−ψ)a − db − θbc
(1+βb+γc) − h2b,

dc
dt = −δc + nαac

(1+ηa)(1+µc) +
nθbc

(1+βb+γc)

 (2)

where r = r1
ZK , α = α1

ZK , p = p1
K , h1 = H1E1

ZK , θ = f1
ZK , h2 = h2E2

ZK , d = d1
ZK , δ = d2

ZK . The

system’s initial conditions are a(0) = a0 ≥ 0, b(0) = b0 ≥ 0, and c(0) = c0 ≥ 0.
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3. Positive Invariance and Boundedness

Let X ≡ (a(t), b(t), c(t))T and S(X) = (S1(X),S2(X),S3(X))T , where

S1(X) = ra(1 − a − b)− ab(1 − ψ)

p + (1 − ψ)a
− αac

(1 + ηa)(1 + µc)
− h1a,

S2(X) =
(1 − ψ)ab

p + (1 − ψ)a
− db − θab

(1 + βb + γa)
− h2b,

S3(X) = −δc +
nαac

(1 + ηa)(1 + µc)
+

nθbc
(1 + βb + γc)

.

The model (2) can be stated as dX
dt = S(X) where S : C+→R3

+ with X(0) = X0∈R3
+, thus,

Sk∈C∞(R) for k = 1, 2, 3. The Lipschitzian function is S and continuous on R3
+. The model

(2) contains positive initial conditions. Hence, (2) the region R3
+ is an invariant.

Theorem 1. All the system’s solutions (2) are bounded in R3
+.

Proof. Let (a(t), b(t), c(t)) be the solutions of the system (2) with non-negative conditions.

da
dt

≤ a(1 − a)

lim supt→∞ a(t) ≤ 1 (by the above inequality).
Let ρ = a + b + c.

dρ

dt
=ra(1 − a)− ab(r +

(1 − ψ)

p + (1 − ψ)a
)− αac(1 − n)

(1 + ηa)(1 + µc)
− h1a +

(1 − ψ)ab
p + (1 − ψ)a

− db

− θbc
(1 + βb + γc)

(1 − n)− h2b − δc,

≤ra(1 − a)− h1a − abr − b(d + h2)− δc, (since n < 1)),

≤ r
4
− h1a − b(d + h2)− δc (since Max {ra(1 − a)} =

r
4
),

≤ r
4
− βρ. where, β = min {h1, d + h2, δ}.

Thus, we have dρ
dt + βρ ≤ r

4 . By differential inequality theory, we have 0 < ρ ≤ r
4β (1 −

exp−βt
) + ρ(a0, b0, c0)exp−βt. For t→∞, since 0 < ρ ≤ r

4β . So, every solution of model (2) is
confined to non-negative initial conditions around Ω

Ω = {(a, b, c) ∈ R3
+ : a + b + c ≤ r

4β
+ ∈}.

Hence, the result.

4. Boundary Equilibrium Points

• E0 is the point of trivial Equilibrium. Here, E0 (0, 0, 0) exists.
• E1, diseased prey and no predator Equilibria, E1 (

r−h1
r , 0, 0) exists for h1 < r.

• E2 is the equilibria with no predator, E2 (ā, b̄, 0) where ā = p(d+h2)
(1−d−h2)(1−ψ)

and

b̄ = (r(1−a)−h1)(p+(1−ψ)a)
r+(1−ψ)

. E2 exists for p(d + h2) < (1 − d − h2) and h1 < r(1 − a).

• E3 is the equilibria with no disease, E3 (ā, 0, c̄) where ā = δ(1+µc)
nα−ηδ(1+µc) and

c̄ = (r(1−a)−h1)(1+ηa)(1+µ)
α . E3 exists for ηδ(1 + µc) < nα and h1 < r(1 − a).

• E∗ is the equilibria of interior which is positive, by system (2) E∗ (a∗, b∗, c∗). It exists
for δ > nα, (1 + βb∗ + γc∗) > 0, r(1 − a∗ − b∗) > h1 − b∗, αp > 0. Where,
a∗ = (p+(1−ψ))((d+h2)+(1+βb∗+γc∗)+θc∗)

(1−ψ)(1+βb∗+γc∗) ,
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b∗ = (1+β+γc∗)(δ(1+ηa∗)(1+µc∗)−nαa∗)
(1+ηa∗)(1+µc∗)nθ

,

c∗ = ((1+ηa∗)(1+µ))(p+(1−ψ)a∗(r(1−a∗−b∗)−h1)−b∗(1−ψ))
α(p+(1−ψ)a∗) .

5. Local Stability

The Jacobian matrix for local stability analysis at an arbitrary point (a, b, c) is

n11 =r(1 − 2a − b)− pb(1 − ψ)

(p + a − ψa)2 − αc
(1 + ηa)2(1 + µc)

− h1, n12 = −ar − a(1 − ψ)

a − aψ + p
),

n13 =− αa
(1 + µc)2(1 + ηa)2 , n21 =

pb(1 − ψ)

(p + a − ψa)2 , n31 =
αcn

(1 + ηa)2(1 + µc)
,

n22 =
a(1 − ψ)

a − aψ + p
− d − cθ(1 + γc)

(1 + βb + γc)2 − h2, n23 = − bθ(1 + βb)
(1 + βb + γc)2 ,

n32 =
θcn(1 + γc)

(1 + βb + γc)2 , n33 = −δ +
αan

(1 + µc)2(1 + ηa)
+

θbn(1 + βb)
(1 + βb + γc)2 .

Theorem 2. In the system (2), we have

1. The equilibria of trivial point E0(0, 0, 0) is locally stable if r < h1; otherwise, it is unstable.
2. The equilibria without infection and predator E1(

r−h1
r , 0, 0) is locally asymptotically stable if

r < h1, −d − h2 > (r−h1)(1−ψ)
(r−h1)(1−ψ)+p , δ < (r−h1)nα

1+η(r−h1)
.

3. The equilibria with no predator (ā, b̄, 0) is locally asymptotically stable if Y11 > 0, Y12 > 0,

and δ > nαā
1+η ā +

bnθ(1+βb)
(βb+1)2 .

Proof.

1. The eigenvalues of E0(0, 0, 0) are r − h1, −d − h2, −δ. Hence, it is locally asymptoti-
cally stable when r < h1. If not, it is unstable.

2. The eigen values of E1(
r−h1

r , 0, 0) are h1 − r, (r−h1)(1−ψ)
(r−h1)(1−ψ)+p − d − h2, δ + (r−h1)nα

(r+η(r−h1)
.

Hence, it is locally asymptotically stable if r < h1, −d − h2 > (r−h1)(1−ψ)
(r−h1)(1−ψ)+p , δ <

(r−h1)nα
1+η(r−h1)

. If not, it is unstable.

3. The Jacobian matrix is

n11 =r(1 − 2ā − b̄)− pb̄(1 − ψ)

(p + ā − ψā)2 − h1, n12 = −ār − ā(1 − ψ)

ā + āψ + p
), n13 = − αā

1 + η ā
,

n21 =
pb̄(1 − ψ)

(p + ā − ψā)2 , n22 =
ā(1 − ψ)

ā − āψ + p
− d − h2, n23 = − b̄θ(1 + βb)

(βb̄ + 1)2 , n31 = 0, n32 = 0,

n33 =− δ +
ānα

1 + η ā
+

bnθ(1 + βb)
(βb + 1)2 .

The characteristic form of J(E2) is (n33 − λ)(λ2 + Y11λ + Y12) = 0, where Y11 = −(n11 +
n22) and Y12 = n11n22 − n12n21. Hence, the one of the eigenvalues of the above characteris-
tic equation is n33, which is negative, and the other two eigenvalues also must be negative.
Hence, E2 is locally asymptotically stable if Y11 > 0, Y12 > 0 and δ > ānα

1+η ā +
bnθ(1+βb)
(βb+1)2 .

Theorem 3. The equilibria with no infection (ā, 0, c̄) is locally asymptotically stable if Y11 > 0,
Y12 > 0 and −(d + cθ(1+γc)

(βb+γc+1)2 + h2) >
a(1−ψ)

a−aψ+p . (This proof is similar to Theorem 2.(3))

Theorem 4. The point of equilibria E∗ is locally asymptotically stable if Y1 > 0, Y3 > 0, and
Y1Y2 −Y3 > 0.
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Proof. The Jacobian form of system (2) at E∗(a∗, b∗, c∗) where,

g11 =r(1 − 2a∗ − b∗)− pb∗(1 − ψ)

(p + a∗ − ψa∗)2 − αc∗

(1 + ηa∗)2(1 + µc∗)
− h1,

g12 =− a∗r − a∗(1 − ψ)

a∗ − a∗ψ + p
, g13 = − αa∗

(1 + µc∗)2(1 + ηa∗)2 , g21 =
pb∗(1 − ψ)

(p + a∗ − ψa∗)2 ,

g31 =
αc∗n

(1 + ηa∗)2(1 + µc∗)
, g22 =

a∗(1 − ψ)

a∗ − a∗ψ + p
− d − c∗θ(1 + γc∗)

(1 + βb∗ + γc∗)2 − h2,

g23 =− b∗θ(1 + βb∗)
(1 + βb∗ + γc∗)2 , g32 =

θc∗n(1 + γc∗)
(1 + βb∗ + γc∗)2 ,

g33 =− δ +
αa∗n

(1 + µc∗)2(1 + ηa∗)
+

θb∗n(1 + βb∗)
(1 + βb∗ + γc∗)2 .

The equation for the cubic characteristic of J(E∗) is

λ3 + Y1λ2 + Y2λ + Y3 = 0. (3)

Y1 = −(g11 + g22 + g33) , Y2 = −(g12g21 + g13g31 + g23g32 − g11g22 − g11g33 − g22g33),
Y3 = −(g11g22g33 + g12g23g31 + g13g21g32 − g13g31g22 − g12g21g33 − g11g23g32). If Y1 > 0,
Y3 > 0, and Y1Y2 −Y3 > 0. Negative real parts are the root of characteristic equation if
and only if Y1, Y3, and Y1Y2 − Y3 > 0. By Routh–Hurwitz, E∗ is locally asymptotically
stable.

6. Global Stability

Theorem 5. If E∗ is globally asymptotically stable in H = {(a, b, c) : a > a∗, b > b∗and c >
c∗or a < a∗, b < b∗and c < c∗}.

Proof. A Lyapunov function is in the form of

L1(a, b, c) = L2(a − a∗ − a∗ln
a
a∗

) + (b − b∗ − b∗ln
b
b∗

) + L3(c − c∗ − c∗ln
c
c∗
),

where L2,L3 are positive constants.
Differentiating L1 with respect to t along with the solution of (2),

dL1
dt

=(
a − a∗

a
)

da
dt

+ L2(
b − b∗

b
)

db
dt

+ L3(
c − c∗

c
)

dc
dt

=[r(1 − a − b)− (1 − ψ)b
p + (1 − ψ)a

− αc
(1 + ηa)(1 + µc)

− h1](a − a∗)

+L2[
(1 − ψ)a

p + (1 − ψ)a
− d − θc

(1 + βb + γc)
− h2](b − b∗)

+L3[−δ +
nαa

(1 + ηa)(1 + µc)
+

nθb
(1 + βb + γc

](c − c∗).(After simplifications we get),

dL1
dt

=− (a − a∗)[r(a + b)− (a∗ + b∗)] + (1 − ψ)(
b

p + (1 − ψ)a
− b∗

p + (1 − ψ)a∗
)

+α(
c

(1 + ηa)(1 + µc)
− c∗

(1 + ηa∗)(1 + µc∗)
)]

−L2(b − b∗)[(1 − ψ)(
a

(p + (1 − ψ)a)
− a∗

(p + (1 − ψ)a∗)
)

−θ(
c

a + (1 + βb + γc)
− c∗

1 + βb∗ + γc∗
]

−L3(c − c∗)n[(
α(a − a∗) + cµ∗(a − a∗)

(1 + ηa)(1 + µc)(1 + ηa∗)(1 + µc∗)
) + θ(

(b − b∗) + γ(bc∗ − b∗c)
(1 + βb + γc)(1 + βb∗ + γc∗)

)].

We see that for dL1
dt , the region is negative:

H = {(a, b, c) : a > a∗, b > b∗ and c > c∗) or a < a∗, b < b∗ and c < c∗} and as a
result, L is a Lyapunov function for all solutions in H.
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7. Hopf Bifurcation Analysis

Theorem 6. For Hopf bifurcation occurring in the model (2), suppose that the bifurcation parameter
ψ exceeds a substantial value. The occurrence of the following Hopf bifurcation criteria, ψ = ψ∗

1. H(ψ∗)I(ψ∗)−J (ψ∗) = 0;
2. d

dψ (Re(ρ(ψ)))|ψ=ψ∗ ̸= 0, where ρ is the zero of the characteristic equation, which equates to
the equilibrium point’s positive value.

Proof. For ψ = ψ∗, the characteristic Equation (3) implies that (ρ2(ψ∗) + I(ψ∗))(ρ(ψ∗) +
H(ψ∗)) = 0. (i.e.,) ±i

√
I(ψ∗) and −H(ψ∗) are the roots of the Equation (7). To establish

that Hopf bifurcation exists at the point, we must fulfill the transversality requirement.
ψ∗ = ψ. d

dψ (Re(ρ(ψ)))|ψ=ψ∗ ̸= 0. For all ψ, the general roots of the form ρ1,2 (ψ) = r(ψ)±
is(ψ), and ρ3(ψ) = −H(ψ). Now, we check the condition d

dψ (Re(ρj(ψ)))|ψ=ψ∗ ̸= 0, j =
1, 2. If ρ1(ψ)= r(ψ) + is(ψ) in (7), we obtain γ1(ψ) + iγ2(ψ) = 0, where, γ1(ψ) = r3(ψ) +
r2(ψ)H(ψ) − 3r(ψ)s2(ψ) − s2(ψ)H(ψ) + r(ψ)I(ψ) + H(ψ)I(ψ), γ2(ψ) = 3r2(ψ)s(ψ) +
2r(ψ)s(ψ)H(ψ)− s3(ψ) + s(ψ)I(ψ).

In order to complete Equation (7), we must have γ1(ψ) = 0 and γ2(ψ) = 0. Then,
differentiating γ1 and γ2 with respect to ψ, we have

dγ1
dψ = T1(ψ)r

′
(ψ)− T2(ψ)s

′
(ψ) + T3(ψ) = 0, (4)

dγ2
dψ = T2(ψ)r

′
(ψ) + T1(ψ)s

′
(ψ) + T4(ψ) = 0, (5)

T1(ψ) = 3r2(ψ) + 2r(ψ)H(ψ)− 3s2(ψ) + I(ψ),
T2(ψ) = 6r(ψ)s(ψ) + 2s(ψ)H(ψ),

T3(ψ) = r2(ψ)H′
(ψ)− s2(ψ)H′

(ψ) + J ′
(ψ) + I ′

(ψ)r(ψ),

T4(ψ) = 2r(ψ)s(ψ)H′
(ψ) + s(ψ)I ′

(ψ).

r
′
(ψ) = −T1(ψ)T3(ψ) + T2(ψ)T4(ψ)

T 2
1 (ψ) + T 2

2 (ψ)
. (6)

r(ψ) = 0 and s(ψ) =
√
I(ψ) at ψ = ψ∗ on T1(ψ), T2(ψ), T3(ψ) and T4(ψ).

So, T1(ψ
∗) = −2I(ψ∗), T2(ψ

∗) = 2
√
I(ψ∗)H(ψ∗), T3(ψ

∗) = −I(ψ∗)H′
(ψ∗) +

J ′
(ψ∗), T4(ψ

∗) =
√
I(ψ∗)I ′

(ψ∗).

r
′
(ψ∗) = J ′

(ψ∗)−(H(ψ∗)I ′
(ψ∗)+I(ψ∗)H′

(ψ∗))
2(I2(ψ∗)+H2(v∗)) , (7)

If J ′
(ψ∗)− (H(ψ∗)I ′

(ψ∗) + I(ψ∗)H′
ψ∗)) ̸= 0,

(i.e.,) d
dψ (Re(ρj(ψ)))|ψ=ψ∗ = r

′
(ψ∗) ̸= 0. j = 1, 2, and ρ3(ψ

∗) = −H(ψ∗) ̸= 0.

Thus, the condition J ′
(ψ∗)− (H(ψ∗)I ′

(ψ∗) + I(ψ∗)H′
(ψ∗)) ̸= 0, the transversality

criteria are confirmed, and the system (2) experiences Hopf bifurcation at ψ = ψ∗.

8. Numerical Simulation

In this section, a few simulations on the system (2) are performed to support the theo-
retical conclusions. The refuge ψ is used as a control parameters. For the fixed parameter,
MATLAB and MATHEMATICA software tools are used to carry out the simulation. Here,
r = 0.1, d = 0.1, δ = 0.2, θ = 0.23, µ = 0.15, η = 0.14, α = 0.4, and ψ = variable. For
Bifurication of refuge ψ, if ψ = 0.2, the model (2) of positive equilibria is asymptotically
stable E∗(0.52754, 0.0916718, 0.204662) and the other parameter values are the identical. As
a result of increasing the bifurcation parameter value, ψ = 0.5, the model (2) lost its stability,
meaning it is asymptotically unstable at E∗(0.53814, 0.0917798, 0.320138). Then, the model
(2) passes the transversality conditions for (Re(ρ(ψ)))|ψ=ψ∗ = 0.002105 ̸= 0. The graph
Figure 1 depicts the system’s (2) behavioral alterations at refuge, ψ = 0.5.
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Figure 1. Dynamical changes of the system (2) at refuge ψ = 0.5.

9. Conclusions and Discussion

We explored an eco-epidemiological model involving refuge of prey and harvesting in
prey with illness in the prey population, in which the predator predates both the sick and
susceptible prey. The results of the boundedness and positivity indicate that the constructed
system (2) is well behaved biologically. When the intrinsic growth rate of the susceptible
prey is smaller than the harvesting rate of the susceptible prey, the population will go
extinct. The system’s local stability at each biologically feasible equilibrium point and
the equilibria for interior (2) has been established.The analytic and numerical results for
hopf bifurication are observed above. This study demonstrates complex behavior, such as
infectious prey refuge and prey harvesting, which provides rich dynamics.
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