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Abstract: The Burr III distribution is extended in this work as a substitute for the numerous Burr III
distributions. A new distribution is developed by applying the log transformation technique to define
the transformed log-Burr III distribution. Moments and quantile function are the structural features
established in this study. The model parameters are derived using the maximum likelihood technique.
The applicability of the new distribution was assessed using real-world data on the transformed total
milk production in the first birth of 107 cows of the SINDI race. The results showed that the proposed
distribution might be used as the optimal distribution for this dataset.

Keywords: Burr III distribution; failure rate; moments; quantile function; transformed log-Burr
III distribution

1. Introduction

Burr (1942) developed a flexible family of probability distributions that can be derived
from a single differential equation [1]. Two members of this family, the Burr types III and
XII, have been introduced by [2]. These distributions are crucial and frequently employed
for modeling many real-life phenomena in diverse areas of application, including ecology,
agriculture, finance, survival analysis, forestry, medical sciences, reliability quality control,
mechanical factors, life distributions, risk analysis, weather forecasting, consumer prices,
and more [3].

There are both theoretical and practical reasons for us to propose this distribution.
Theoretically speaking, the tail of a distribution is closely related to the distributions of
extreme values [4]. In practice, one prefers a distribution that is flexible. The flexibility of the
Burr XII distribution has been studied in [5]. Compared with the Burr XII distribution, the
Burr III distribution is more flexible in the sense that it covers a larger area in the skewness–
kurtosis space. The cumulative distribution function (CDF) of the Burr III distribution is
expressed as

FY(y; β, λ) =
(

1 + y−β
)−λ

; β, λ > 0; y > 0 (1)

where β, λ > 0 are two shape parameters. The corresponding probability density function
(PDF) is expressed as

fY(y; β, λ) = βλy−β−1
(

1 + y−β
)−λ−1

, (2)
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Recently, many extensions of the Burr III distribution have been generated to provide
more flexibility in modeling real life datasets from a variety of applications. Some notable
among them are the beta Burr III distribution [6], applied to survival data, and the extended
three-parameter Burr III distribution [4].

The extension of well-known distributions for modeling real data via generalized
classes of distributions has received considerable attention during the last decade. In par-
ticular, the recent distributions proposed using the T-X approach include the exponentiated
odd Lindley-X family by [7], the Maxwell–Weibull distribution by [8], the Maxwell–Lomax
distribution by [9], the Maxwell–exponential distribution by [10], the odd beta prime-G
family by [11], the odd beta prime–logistic distribution by [12], the odd beta prime–Fréchet
distribution by [13], the log-Topp–Leone distribution by [14], and more others.

The aim of this research is to apply the logarithmic transformation to the Burr III
distribution to create a new, effective, and flexible distribution referred to as the log-Burr
III distribution. The log-Burr III distribution is proposed by the logarithmic transformation
of the famous Burr III distribution. To the best of our knowledge, this is the first attempt to
study the log-Burr III distribution in the literature.

The log-Burr III distribution is derived from the Burr III distribution in a manner
similar to how the log-normal distribution is derived from the normal distribution. The
resultant distribution has a long tail since the logarithmic transformation reduces a large
observation to a small value. This study investigates whether this distribution is appropriate
for modeling real data. We verify in the application section that the log-Burr III model is a
better model for symmetrical and left-skewed datasets and can serve as an alternative to
various extended versions of the Burr III distribution in many practical situations.

The following summarizes the main motivations for proposing the log-Burr III distribution.

i The log-Burr III distribution provides better fit than the traditional Burr III distribution.
ii The Burr III distribution offers symmetrical and left-skewed densities with an upside-

down bath-tub and decreasing failure rates.
iii The Burr III distribution was applied to fit a long-tailed real data, and it provides

superior fits than the other competing distributions.

The rest of this paper is outlined as follows: Section 2 presents the log-Burr III distri-
bution alongside its PDF and hazard rate function plots. Section 3 investigates some of its
basic features. Section 4 discusses its parameter estimation method. Section 5 demonstrates
its usefulness and effectiveness by analyzing real data relating to Milk Production. Section 6
provides the concluding remarks.

2. Developing the Log-Burr III Distribution

In this section, we developed a novel continuous probability distribution to serve
as an alternative to the Burr III distribution using a transforming approach. The novel
distribution is developed by transforming xα = log(y) into the Burr III model to study the
Log-Burr III (LBIII) distribution, where α > 0 is an exponent parameter. The PDF of the
proposed distribution can be obtained by considering

fX(x; α, β, λ) = fY(y; β, λ)×
∣∣∣∣ dy
dx

∣∣∣∣ (3)

In this regard, fY(y; β, λ) is defined in (2) and dy
dx = αxα−1exα

is the derivative of the
transformed approach considered in this study. Therefore, the proposed LBIII distribution
can be expressed as

fX(x; α, β, λ) = αβλxα−1e−βxα
(

1 + e−βxα
)−λ−1

; α, β, λ > 0; x ∈ (−∞, ∞) (4)
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where α is an exponent parameter and β, λ are two shape parameters. Henceforth, the CDF
of the LBIII distribution can be derived by differentiating (4) with respect to x as

FX(x; α, β, λ) =
(

1 + e−βtα
)−λ

; α, β, λ > 0; x ∈ (−∞, ∞) (5)

2.1. Model Validity Check

To determine whether the suggested LBIII distribution is a valid statistical distribution,
the PDF in (4) must satisfy the following condition:

∞∫
−∞

fX(x; α, β, λ)dx = 1 (6)

To demonstrate this, consider substituting (4) as

∞∫
−∞

fX(x; α, β, λ)dx = αβλ
∞∫

−∞
xα−1e−βxα

(
1 + e−βxα

)−λ−1
dx.

= λ
∞∫
0
(1 + m)−λ−1dm,

(7)

since,

m = e−βxα
, and dx = − dm

αβxα−1e−βxα . (8)

Also, letting
1
w

= (1 + m), w =
1

1 + m
, ⇒ dm = −dw

w2 (9)

Putting (9) into (8), we can receive

∞∫
−∞

fX(x; α, β, λ)dx = λ

1∫
0

wλ−1dw = 1. (10)

The proposed LBIII model is a legitimate statistical distribution, as demonstrated by
Equation (11).

2.2. Failure Rate

The failure rate of the proposed LBIII distribution can be determined using (4) and (5) as

h(x; α, β, λ) =
αβλxα−1e−βxα

(
1 + e−βxα

)−λ−1

1 −
(
1 + e−βtα)−λ

; α, β, λ > 0; x ∈ (−∞, ∞) (11)

The probability plots for the PDF and failure rate of the LBIII distribution are presented
in Figures 1 and 2, respectively.

As shown in Figure 1, the LBIII distribution can be left-skewed and symmetric, as
shown in (a) and (b). Similarly, the failure rate of the distribution could have both a decrease
and upside-down bath-tub, as shown in Figure 2a,b.
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Figure 2. Failure rate plots of the LBIII distribution for various parameter values. 
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Figure 2. Failure rate plots of the LBIII distribution for various parameter values.

2.3. Mixture Representations

The PDF of the LBIII distribution can also be presented as a mixture representation
study in this section using the following procedure:

Let us consider the generalized binomial expansion when c > 0 as

(1 + ψ)−c =
∞

∑
i=0

(−1)i
(

c + i − 1
i

)
ψi (12)

Putting (12) into the PDF from (4) yields

fX(x; α, β, λ) == αβλxα−1
∞

∑
i=0

(−1)i
(

λ + i
i

)
e−(i+1)βxα

(13)

which is the PDF of the LBIII distribution expressed as a mixture representation.
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3. Structural Features of the LBIII Distribution

This section describes some features of the LBIII distribution, such as moments and
the quantile function.

3.1. Moments

Suppose X is a random variable that follows the LBIII distribution, then the moments
of the random variable X are defined as

E(xr) =

∞∫
−∞

xr fX(x; α, β, λ)dx (14)

where fX(x; α, β, λ) is defined in (13). Substituting (13) into (14), it becomes

E(xr) = 2αβλ
∞

∑
i=0

(−1)i
(

λ + i
i

) ∞∫
0

xr+α−1e−(i+1)βxα
dx (15)

Let

v = β(i + 1)xα, x =

{
v

β(i + 1)

} 1
α

, ⇒ dx =
dv

αβ(i + 1)xα−1 (16)

Putting (16) into (15), we can obtain

E(xr) = 2λ
∞

∑
i=0

(−1)i

β
r
α (i + 1)1+ r

α

(
λ + i

i

)(
1 +

r
α

)
(17)

3.2. Quantile Function

The quantile function of the LBIII is derived by inverting (5) as

xq =

{
− 1

β
log

(
u− 1

λ − 1
)} 1

α

; u ∈ [0, 1] (18)

where u has a uniform random variable with interval 0 and 1.

4. Parameter Estimation

In this section, the parameters of the LBIII distribution will be determined by employ-
ing the Maximum Likelihood (ML) approach.

Let x1, x2, . . . xn denote the possible outcomes of a random sample of size n that was
drawn from the LBIII model with vector parameter ψ = (α, β, λ)T . To determine the ML
estimator of the parameter ψ, the log-likelihood function of (4), denoted by ℓ, is given by

ℓ = n log(α) + n log(β) + n log(λ) + (α − 1)
n

∑
i=1

log(xi)− β
n

∑
i=1

(xα
i )− (λ + 1)

n

∑
i=1

log
(

1 + e−βxi
)

(19)

Therefore, the ML estimator ψ̂ of ψ can be derived by maximizing (19), which can be
performed by considering some statistical packages such R-package and so on.

5. Applications

The performance of the novel Transformed Log-Burr III distribution is demonstrated
in this section by using data from the first birth of 107 SINDI race cows. This distribu-
tion can be compared to existing distributions such as the Burr III and New Modified
Burr III (NMBIII), and its performance is measured using information criteria such as
the Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (CAIC),
Bayesian Information Criterion (BIC), and Hannan–Quinn Information Criterion (HQIC).



Eng. Proc. 2023, 56, 322 6 of 7

The distribution with the lowest value of those criteria should be considered the best fit for
the dataset.

Dataset: Milk Production Data

This data is presented as follows: The data considered in this study can be found in a
study conducted by [15], and it comprises transformed milk production in the first birth of
107 cows from the SINDI race.

The findings of the transformed log-BIII distribution were compared to the outcomes
of competing distributions in Table 1.

Table 1. Results for Milk Production data.

Model Estimate AIC CAIC BIC HQIC

BIII λ̂ = 1.0970 163.1852 163.3006 168.5309 165.3523
β̂ =1.0946

NMBIII θ̂ = 0.2210 190.8067 191.0398 198.8252 194.0573
β̂ = 0.6682
λ̂ = 1.1411

LBIII α̂ = 1.1425 142.7657 142.9988 150.7842 146.0163
β̂ = 1.8952
λ̂ = 1.8509

Table 1 displays the estimated, AIC, CAIC, BIC, and HQIC for the proposed distri-
bution as well as the competing distributions. The proposed LBIII model has the lowest
values of the AIC, CAIC, BIC, and HQIC. This demonstrates that the LBIII model is the
best fit for the milk production dataset.

6. Conclusions

In this paper, we propose a novel transformed log-BIII distribution as an alternative
to the Burr III and New Modified Burr III distributions. The proposed distribution could
be symmetrical and left-skewed, with an upside-down bath-tub and decreasing failure
rates, and its many features are investigated. The adaptability of the novel distribution was
demonstrated using real datasets relating to milk production at the first birth of 107 SINDI
race cows, and the findings revealed that this distribution fitted the dataset.
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