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Abstract: Deep learning (DL) has become increasingly popular in recent years, with researchers and
businesses alike successfully applying it to a wide range of tasks. However, one challenge that DL
faces in certain domains, such as remote sensing (RS), is the difficulty of creating large, well-annotated
training datasets. This is due to the high cost of acquiring and labeling RS data. This challenge
significantly limits the development of DL in RS. RS data can come from multiple sources, such as
satellites, airplanes, and drones, and use different sensor technologies. Training DL models on data
from one source may not produce the same accuracy on data from other sources, even if they cover
the same region. Transfer learning (TL) can help to address this challenge by relaxing the requirement
for large training datasets. Specifically, TL allows us to train a model on data from one source and
then adapt it to data from another source, even with fewer training data. This makes TL a promising
approach for solving both the problem of multisource adaptation and the problem of insufficient
training data in the target domain. This paper evaluates the homogenous and heterogeneous TL
approach that addresses model transfer across different domains. Transfer gain is measured through
specific statistical metrics such as precision, kappa, recall, and F1-score, and a positive gain is
empirically shown in the vast majority of cases. The proposed method is evaluated on the challenging
task of Multispectral RS image (MSI) classification due to the complexity and variety of natural scenes.
This work is examined in terms of its social, economic, and environmental consequences. Additionally,
potential future directions for research and the achievement of established goals are explored.

Keywords: transfer learning; heterogenous learning; homogenous learning; multispectral remote
sensing; Sentinel-2; Landsat-9

1. Introduction

Most machine learning (ML) methods employed nowadays assume that training and
test data are from the same feature space and distribution [1]. This implies that when
the data distribution changes, models trained from scratch with newly collected data
are required. However, there are situations where obtaining new data for training new
models can be financially or logistically challenging, particularly in environments where
data collection demands substantial computational power or financial resources. Hence,
the ability to leverage existing knowledge becomes highly valuable, offering a means to
circumvent the expensive endeavor of reconstructing a model from scratch and amassing
sufficient new data to create a dependable system. This is where the concept of transfer
learning (TL) becomes indispensable.

TL is a concept that allows information learned in one setting to be used in another, or
at least part of it. This can improve the training process by avoiding the need to develop new
models from scratch and instead adapting previously built models to a new setting. TL has
proven to be a powerful technique with successful results in many different environments.
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However, there are several challenges that need to be considered before deciding whether
to use TL.

The classification of multispectral remote sensing (RS) images (MSI) is a critical and
important topic that has been extensively studied. It is essential for a variety of appli-
cations, including land cover mapping, vegetation monitoring, urban analysis, resource
management, and decision making. The complexity and variety of natural scenes pose
significant challenges for MSI classification. This is due to the unique characteristics of
RS data, such as spectral variability, spatial heterogeneity, and temporal dynamics. These
characteristics make it difficult to distinguish between different land cover classes, and
collecting data to train deep learning (DL) models can be expensive or even unfeasible.
Therefore, using homogeneous and heterogeneous TL to reduce costs and labor time and
enhance classification accuracies would be extremely useful. TL has shown promise in
improving the performance of MSI classification. In recent years, a number of studies
have used TL to achieve state-of-the-art results on a variety of MSI classification tasks.
However, selecting the right source domain and task is essential for successful TL in RS.
The performance of the target model is significantly influenced by the source model.

The importance of selecting the right source dataset and task for TL (TL) in multi-
spectral RS image (MSI) classification for both homogeneous and heterogeneous TL was
investigated using Sentinel-2 (S2) and Landsat-9 (L9) MSI imagery as heterogeneous do-
mains. Homogeneous TL was evaluated for S2 to S2 and L9 to L9, and heterogeneous TL
was evaluated for S2 to L9 and L9 to S2. A variety of metrics were used for evaluation,
including precision, kappa, recall, and F1-score. The results showed the importance of TL
and suggested using homogeneous TL whenever possible.

This paper is organized as follows. Section 2 delves into the fundamental concepts of
TF, including domain and task definitions, and differentiates between homogeneous and
heterogeneous TL. Section 3: The methodology outlines the meticulous data preparation
process, dataset details, and the architecture of our neural network models used in the
experiments. Section 4: The experimental section is the heart of our paper, where we
present the results and analyses of two distinct TF experiments: homogeneous TL and
heterogeneous TL. This paper concludes with Section 5.

2. Deep Transfer Learning

In TL, knowledge is transferred from one domain to another to improve the training
process, either in terms of model performance or training speed. TL can be used to address
the scarcity and cost of collecting training data. When discussing TL, it is necessary to
define some concepts. According to [1], a domain D is defined as a collection of data
with a shared feature space X and marginal probability distribution P(X), which can be
represented as D = {X, P(X)}. Similarly, a task T is defined as a set of data with a shared
target space Y and objective predictive model M, which can be represented as T = {Y, M}.
TL can be defined as the process of reducing the cost of learning a predictive model in a
target domain DT by leveraging knowledge from a source domain DS and a learning task
TS, where the source and target domains may have different feature spaces X and/or target
spaces Y [2]. This leads to the definition of two fundamental types of TL: homogeneous
and heterogeneous.

2.1. Homogenous Transfer Learning

Homogeneous TL is described as a situation where the feature spaces of data in both
the source and target domains match precisely (XS = XT), the corresponding outcome spaces
are identical (YS = YT), and the dimensions of these spaces are also equivalent (dS = dT) [3].
This alignment simplifies the task of transfer learning (TL), as it establishes a seamless match
between the data attributes and the target objectives. When transitioning knowledge from
one domain to another, the transferred model simply requires specialization in tackling
the particular task within the target domain. This process can be accomplished through
fine-tuning the model, wherein the model is trained using data from the target domain
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while maintaining the weights acquired during training in the source domain. This is more
efficient than randomly initializing and optimizing the model from scratch, as the model
already has some knowledge from the previous task. Homogeneous TL has proven to
be a successful technique in bolstering model performance and expediting training. To
illustrate, in reference [4], the authors show that knowledge transfer can be used to improve
the performance of image classification on the ImageNet dataset [5].

2.2. Heterogenous Transfer Learning

Heterogeneous TL [6] is distinguished by the presence of dissimilar feature spaces
and/or target spaces between the source and target domains, as depicted in Figure 1. In
other words, XS 6= XT and/or YS 6= YT. This signifies that the domains may lack shared
features, and the dimensions of these features may also differ. Therefore, heterogeneous
TL is more challenging than homogeneous TL, as it necessitates bridging the gap between
disparate features and their respective quantities. While knowledge transfer remains a
possibility in heterogeneous TL, it becomes more challenging due to the need to trans-
late valuable information originally represented in terms of the source domain into an
appropriate format for the target domain. Heterogeneous TL is not always possible or ad-
visable, as it can be more difficult to implement and may not lead to the same performance
improvements as homogeneous TL.
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Figure 1. Comparing surface reflectance values from S2 and L9 data over the same geographic area.
Common bands such as blue, green, red, NIR, SWIR-1, and SWIR-2 are typically selected in both
domains. This uniform band selection ensures that the spectral information used for comparison is
consistent across different data sources. In all plots, the x-axis represents the L9 values, and the y-axis
represents the S2 values.

When the domains, features, or tasks exhibit substantial dissimilarity, a phenomenon
known as negative transfer learning (TL) can occur [6]. Negative TL arises when the process
of transferring knowledge from the source domain to the target domain has an adverse
impact on the model’s performance within the target domain. In such cases, it is often more
prudent to opt for training a model from the ground up, utilizing advanced techniques like
data augmentation, active/meta learning, and others, rather than attempting to transfer a
model from the source domain. The different types of TL methods can be distinguished
based on their feature space, the difference between the domains, and the tasks that the
predictive models are intended to perform.
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3. Methodology
3.1. Source and Target Data Preparation

The first step in TL is to pre-process the data and create the appropriate training and
validating splits. S2 and L9 imageries are downloaded and saved. Then, only the bands
(features) that are considered most relevant to the task are kept. These features, which are
briefly described in Table 1, are the same for both domains. Once the final datasets are
created, they are split into training and test subsets. A 70:30 data split is used, meaning
that 70% of the data samples are used for training, and 30% are used for testing. Finally, the
training and test sets are scaled. At this point, the data is fully processed, and the training
and test datasets can be used to train and validate the predictive models. The entire data
processing stage is performed on both the source and target domain data independently.

Table 1. Selected MSI bands.

Sentinel-2 Landsat-9

Band Resolution CV Band Resolution CV

(m) (nm) (m) (nm)

Blue 10 m 490 nm 30 m 452 nm
Green 10 m 560 nm 30 m 561 nm
Red 10 m 665 nm 30 m 665 nm
NIR 10 m 842 nm 30 m 865 nm

SWIR1 20 m 1610 nm 30 m 1609 nm
SWIR2 20 m 2190 nm 30 m 2200 nm

As discussed in [6–10], the key to achieving successful TL and avoiding negative
effects is to discover and exploit shared underlying structures between DS (X; Y) and DT
(X; Y).

3.2. Dataset Description

Our dataset comprises two subsets derived from satellite images acquired by S2 and
L9, encompassing seven spectral bands (blue, green, red, near-infrared, shortwave infrared
1, shortwave infrared 2), along with calculated indices: NDVI (Normalized Difference
Vegetation Index) and NDWI (Normalized Difference Water Index).

The S2 data were collected in 2023 using a single raster image, along with a cloud
mask to detect and mask cloudy areas. In contrast, the L9 data were gathered over three
years, from 2021 to 2023, using a series of five raster images, and they also incorporate a
cloud mask for the identification and exclusion of cloudy regions. Each subset contains
three CSV files, each with 10,000 samples, resulting in a total of 30,000 samples. The first file
focuses on distinguishing olive-bearing land from other land types, featuring two classes:
olive and non olive. The second file targets the differentiation between palm vegetation and
other land cover types, comprising palm and non-palm classes. Lastly, the third file aims to
detect the presence of buildings within land sections, with classes labeled as Building and
non building. This dataset offers a valuable resource for land classification tasks, including
land cover mapping, urban planning, and agriculture monitoring, harnessing the richness
of spectral bands and computed indices to facilitate accurate and efficient land feature
classification in various applications.

3.3. Model Training

After processing the data samples and constructing train and test datasets for both
the source and target domains, the next step involves the creation and training of a neural
network specifically designed for the source domain. However, to gain a comprehensive
understanding of how the proposed solution operates, it is necessary to explain the neural
network architectures selected to accomplish this task.
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3.4. Neural Network Architectures

1D convolutional neural networks (CNNs) are used here as shown in Figure 2. They
consist of two consecutive 1D convolutional layers, followed by one dropout and one
max-pooling layers; then, features are flattened to be injected in classical classifiers multiple
layer perceptron (MLP).
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3.5. Source Model Training Process

CNN weights are randomly initialized via Xavier initialization [11]. All layers use
rectified linear unit (Relu) as the activation function and Adam [12] as the optimizer with a
learning rate of 0.001. The training was run for 100 epochs with batch size of 32.

3.6. Target Model Training (Fine-Tuning)

The TL idea is based on the conclusions discussed in [5], which state that neural
networks have a tendency to acquire more general features in their initial layers and
progressively more specific features in the later layers of their architecture. Consequently,
even when the features received by the network differ, as long as there is a sufficient
degree of similarity between the source domain (SD) and the target domain (TD), the
neural network should have the capacity to adapt and leverage this shared information
to successfully perform the assigned task. It is generally not advisable to remove and
randomly initialize the weights of the input layer when aiming to maximize the transfer of
information across domains.

The information contained in the first layer of a neural network can be pivotal for the
effective functioning of subsequent layers. Altering or removing this information may lead
to a significant decrease in the network’s performance. In TL, the final classification layer
of a pretrained CNN (SoftMax) is reconfigured to meet the new classification task, and the
remaining layers are frozen during training and later used as feature extractors. However,
the last two layers are unfrozen and trained to learn the new classification task. Once the
TL is performed and the transferred model is capable of processing the input features of
the target domain, the performance of the transferred model is evaluated. To do this, an
exact copy of the transferred model is created, but with reinitialized weights. This allows
the results obtained by the transferred model to be compared to the results that a model
with the same architecture trained from scratch would produce.

4. Experimental Section

This project has been developed using Python and TensorFlow as the DL framework.
The developed solution was coded in Jupyter Notebook, and executed with CPU Intel Core
i7-9700k with 16 GB of RAM and GPU NVIDIA 1080-Ti.

https://github.com/mrouba/TL_RS
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4.1. MSI Homogenous TL

Sentinel-2A and Landsat-9 data were leveraged as the target and source domains to
enhance the model’s capabilities for classifying olive trees. First, a model was trained on
Sentinel-2A and Landsat-9 data with a palm classification task [13,14]. This foundational
training enabled the model to grasp the intricacies of identifying palm trees in satellite
imagery. Then, the model was fine-tuned on Sentinel-2A and Landsat-9 data with an olive
classification task. Fine-tuning the model with data from a source domain with remarkable
similarity to the target domain was found to be strategic. By employing a source domain
that mirrored the characteristics of the target domain, the fine-tuning process was highly
effective, enabling the model to adapt quickly to the nuances of the olive classification task
and resulting in a substantial boost in accuracy.

According to Table 2, impressive accuracy was achieved when our model for olive tree
classification was fine-tuned using a source model trained for building classification. This
experiment broadened our perspective on the capabilities of machine learning models by
showing that the traditional boundaries between source and target tasks can sometimes
be more fluid than expected. This prompted us to rethink our preconceived notions about
domain dissimilarity in machine learning. The ability of our model to fine-tune effectively
suggests that there may be latent similarities or transferable knowledge across seemingly
distinct domains.

Table 2. Performance metrics for homogeneous transfer learning from different tasks using Landsat-
9/Sentinel-2A data.

Landsat-9 Sentinel-2

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

TL (Palm → Olive) 0.98 0.98 0.98 0.98 0.95 0.95 0.95 0.95
TL (Buildings → Olive) 0.96 0.96 0.96 0.96 0.85 0.88 0.85 0.84

The distribution of the three classes (olive, building, and palm) in Sentinel and Landsat
data was visualized using t-SNE plots in Figures 3 and 4, which condensed the multidi-
mensional information into a clear two-dimensional representation. This revealed how
the classes were distributed and related. The olive class was notably positioned in close
proximity to the building and palm classes, suggesting that it shares certain common
features or characteristics with the other two classes.
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4.2. MSI Heterogenous TL

A model for olive tree classification was fine-tuned on S2 data using a building/palm
task classification model trained on S2 images as the source model. The goal was to create
a robust model capable of accurately identifying olive trees in L9 data. However, the
dissimilarity between the two domains (L9 for target model and S2 for source model) posed
a significant challenge. Even though bands that were shared between the two domains
were carefully selected, they exhibited a low correlation, making it difficult for the model
to generalize effectively.

We undertook the task of resampling L9 data to match the spatial resolution of S2,
which is 10 m. It is worth noting that L9 originally possessed a spatial resolution of 30 m.
The resampling procedure involved the utilization of cubic resampling techniques, and
the outcomes were truly noteworthy. The resampled dataset exhibited a remarkable en-
hancement in classification accuracy when compared to the original data. This discovery
underscores the critical significance of carefully selecting appropriate spatial resolution
images for RS applications, given their profound influence on the performance and adapt-
ability of machine learning models.

According to Table 3, the utilization of L9 imageries as the source domain for fine-
tuning on S2 data as the target domain yields a notably strong performance. This remark-
able outcome can be primarily attributed to the quality of the L9 data. The high quality of
the source data significantly contributes to the effectiveness of the TL process, providing a
solid foundation for the model’s adaptation to the target domain.

Table 3. Performance metrics for HTL from different tasks using L9/S2 data.

Sentinel-2 to Landsat-9 Landsat-9 to Sentinel-2

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

TL (Palm → Olive) 0.50 0.25 0.50 0.33 0.67 0.80 0.67 0.63
TL (Buildings → Olive) 0.50 0.25 0.50 0.33 0.86 0.89 0.86 0.86

Table 4 reveals the considerable improvements resulting from the resampling of L9
data to match the spatial resolution of S2 data in the realm of HTL. Accuracy, precision,
recall, and F1-score metrics emphasize the substantial impact of spatial resolution alignment
on model performance.

Table 4. Performance metrics for HTL from different tasks using L9 (resampled)/S2 data.

Sentinel-2 to Landsat-9 Landsat-9 to Sentinel-2

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

TL (Palm → Olive) 0.51 0.69 0.51 0.35 0.97 0.98 0.97 0.97
TL (Buildings → Olive) 0.50 0.25 0.50 0.33 0.86 0.89 0.89 0.85
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The quality of the L9 data is a critical factor influencing the success of fine-tuning in the
context of HTL. This observation holds true for both Tables 3 and 4. When L9 data exhibit
higher quality compared to S2, they significantly contribute to the effectiveness of the TL
process. This underscores the importance of having high-quality source data, as it provides
a solid foundation for the model’s adaptation to the target domain. Additionally, taking
spatial resolution alignment into consideration, as demonstrated in Table 4, plays a vital
role in enhancing model performance. Therefore, ensuring high-quality source data and
thoughtful consideration of resolution are paramount for achieving superior performance
in such transfer learning scenarios.

5. Conclusions

This study explores the concept of TL, emphasizing its vital role in domain and
task considerations. It categorizes knowledge transfer into two forms: homogeneous TL
and heterogeneous TL, illustrating how source–target domain similarities impact transfer
effectiveness. Using S2 and L9 data, we explore these TL scenarios, highlighting the
importance of task and source data choice for efficient transfer. Our work underscores the
need for thoughtful domain and task selection to optimize TL outcomes. Additionally, our
findings reveal the complexity of domain adaptation, showing that the reverse approach
does not guarantee success. This is influenced by domain nuances, dataset characteristics,
and model adaptability. Our study emphasizes the importance of strategic domain selection
for effective TL. This is influenced by domain nuances, dataset characteristics, and model
adaptability. Our study emphasizes the importance of strategic domain selection for
effective TL.
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