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Abstract: This study investigates the vulnerability of Alberta province in Canada to extreme weather
events, particularly drought, which has historically caused significant financial losses. Accurate
simulating techniques are crucial for obtaining reliable results to identify trends and patterns in
Alberta climatology. In this study, 4-monthly synoptic station data spanning 35 years (1979 to 2014) are
used alongside Long Short-Term Memory (LSTM) to analyze patterns of precipitation. Additionally,
the Standardized Precipitation Index (SPI) is used to identify drought severity at different time scales
(3, 6, and 12 months). The results demonstrate that drought occurrences have been observed in the
Southern part of Alberta, with rising tendencies in larger areas, such as Calgary agricultural areas,
being prone to severe drought.

Keywords: drought; precipitation patterns; Standardized Precipitation Index (SPI); Long Short-Term
Memory (LSTM)

1. Introduction

The changing climate is anticipated to lead to more severe drought events and their
consequential impacts on both society and the environment [1,2]. Drought occurrences
are not limited to specific geographical regions, being widespread across the world and
posing challenges in their accurate quantification [3]. Extensive research has investigated
the effects of climate change on water discharge patterns and unveiled the possibility
of an increased severity of drought events in numerous regions, such as Europe, central
North America, Central America, Mexico, northeastern Brazil, and southern Africa [4].
According to [5], there has been a substantial increase in the extent of global regions prone
to chronic draughts.

The Standard Precipitation Index (SPI) stands as a widely utilized drought index,
considered one of the most popular and accepted ones, originally developed in [6]. The
SPI holds several advantages over other drought indices, including consistent spatial
interpretation and reduced computational complexity, making it well-suited for prediction
and risk analysis [7]. Also, developing an accurate climate model is challenging due
to its nonlinear nature [8]. One prominent technique utilized for learning long-term
dependencies, especially when dealing with time-series data, is Long-Short-Term-Memory
(LSTM), which was introduced in [9] and has demonstrated superior capabilities compared
to recurrent neural networks (RNNs) [10].

The main objective of this study is to simulate and determine Alberta’s climate pattern
using a deep learning LSTM method, and to diagnose the drought vulnerability of Alberta
by using the SPI (3, 6, and 12 months) with monthly precipitation data from four gauging
stations in the study area, which is depicted in Figure 1. To find out the performances
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of the utilized method, the root mean square error (RMSE), as well as the coefficient of
determination (DC), are used as performance indicators.
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ner, confined by coordinates 49° N in the south, 110° W in the east, 120° W in the west, 
and 57° N in the north, spanning approximately 257,848 square kilometers. Agricultural 
regions in Alberta experience a steppe climate with continental influences. During the 
hottest days of the year, temperatures can reach up to 30 degrees Celsius or even higher. 
The region receives an average annual precipitation of approximately 425 mm. Addition-
ally, observational data from four stations located within the regions of the province will 
be employed, and these data are available on the website www.acis.alberta.ca (accessed 
on 1 August 2023). 

2.2. Standard Precipitation Index (SPI) 
The SPI is a prominent drought-monitoring indicator adopted by the World Meteor-

ological Organization [11]. The SPI is a probabilistic measure that relies exclusively on 
precipitation data and was introduced in [5] to evaluate precipitation deficits in a manner 
distinctively linked to probability. The SPI is calculated across various accumulation 
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Figure 1. The location of the study area and synoptic stations employed in this study.

2. Methods and Materials
2.1. Study Area and Dataset

Alberta is a Canadian province situated in the southern region, covering an area of
661,000 square kilometers. Figure 1 shows the agricultural areas in the southwestern corner,
confined by coordinates 49◦ N in the south, 110◦ W in the east, 120◦ W in the west, and 57◦

N in the north, spanning approximately 257,848 square kilometers. Agricultural regions
in Alberta experience a steppe climate with continental influences. During the hottest
days of the year, temperatures can reach up to 30 degrees Celsius or even higher. The
region receives an average annual precipitation of approximately 425 mm. Additionally,
observational data from four stations located within the regions of the province will be
employed, and these data are available on the website www.acis.alberta.ca (accessed on 1
August 2023).

2.2. Standard Precipitation Index (SPI)

The SPI is a prominent drought-monitoring indicator adopted by the World Meteo-
rological Organization [11]. The SPI is a probabilistic measure that relies exclusively on
precipitation data and was introduced in [5] to evaluate precipitation deficits in a man-
ner distinctively linked to probability. The SPI is calculated across various accumulation
timeframes, typically relying on monthly precipitation data, denoted as SPI-n, where ‘n’
signifies the number of months over which the accumulation occurs. This calculation can
be likened to a moving average, where each month’s value is correlated with preceding
months, determined by the chosen accumulation timeframe. Negative SPI values indicate
drier conditions than what is considered typical for the given timeframe and location,
while positive SPI values denote wetter conditions compared to the expected norm for that
specific timeframe and location.

The SPI is defined as

SPI =
Xi − X̄

Sd
(1)

where ‘Xi’ represents the precipitation value for a specific period, ‘i’. ‘X̄’ denotes the
mean precipitation in the historical series for the same period, ‘i’, while ‘Sd’ represents the
standard deviation of the mean precipitation in that period.

www.acis.alberta.ca
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2.3. Long Short-Term Memory

The LSTM network, a specialized type of recurrent neural network (RNN), has been
demonstrated to be stable and effective in modeling long-range dependencies [12]. LSTM
networks are a type of recurrent neural network with memory blocks containing a cell state,
input gate, forget gate, and output gate. The cell state serves as the memory, while the gates
control information flow. The input gate manages new input, the forget gate determines
what to forget from the previous state, and the output gate decides how to use memory for
the output. LSTMs excel at learning from sequential data. For detailed mathematics, refer
to [9].

2.4. Evaluation Criteria

In assessing the efficacy of the employed methodologies within this investigation,
two evaluation criteria, namely the root mean square error (RMSE) and the coefficient of
determination (referred to as DC or Nash–Sutcliffe), were utilized:

RMSE =

√
∑N

i=1 (Ri − Zi)
2

N
(2)

DC = 1 − ∑N
i=1 (Zi − Ri)

2

∑N
i=1

(
Zi −

−
Z
)2 (3)

where Ri signifies the estimated value, Zi represents the target value,
−
Z stands for the

average value of the target observations, and N denotes the size of the sample. The RMSE
maintains the same dimension as the observations, whereas the DC is unitless and falls
within the range of (−∞, 1]. A higher DC value approaching 1 indicates a greater degree of
accuracy in the regression analysis.

3. Results
3.1. Standard Precipitation Index (SPI)

This study aims to monitor drought using the SPI index in Alberta, Canada. In this
way, the input data were collected from Alberta’s four synoptic stations for the period
spanning from 1979 to 2014. Moreover, an LSTM-based statistical downscaling model was
used to simulate and assess the suitability of this method for prediction purposes. Since
the input data contain missing values, the missing data were filled using the seasonal
pattern method; then, the SPI values were calculated at the temporal time scales of 3, 6, and
12 months. The seasonal pattern method first identified the seasonal pattern of observation
data, which refers to repeating patterns or trends that occur at regular intervals. Then, the
observation data are decomposed into their constituent components. After that, the method
inputted missing values in the seasonal component of the data. In the second step, the
SPI values were calculated at the time scales of 1, 3, 6, and 12 months in different regions
of Alberta.

According to the information provided in Figure 2, it is apparent that the indices
for all stations displayed significant fluctuations when observed over shorter periods.
However, these fluctuations tended to decrease as the analysis focused on longer time
scales. In the context of a 12-month drought period, the first station, as depicted in Figure 2a,
experienced its most pronounced drought conditions during the middle and end portions
of the statistical period, specifically spanning from 2000 to 2004 and from 2008 to 2010,
covering a duration of eight years. Furthermore, according to Figure 2b, at the second
station, based on the 12-month drought period, the greatest drought occurred in the middle
and end of the reference period (i.e., 1983–1985, 1988–1989, 2000–2003, and 2007–2008) over
11 years. And at the third station (Figure 3c), drought occurred longer than at the first and
second stations by 15 years. The drought at this station occurred within the first 5 years,
and in the middle and last decade of the statistical period. Finally, in Figure 2d, the longest
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drought period happened over 18 years at the fourth station. Similar to the third station,
drought events transpired during the initial, middle, and final years of the statistical period.
The findings from the SPI analysis reveal that the most severe drought occurrences took
place at the first and second stations, three times each, and at the third and fourth stations,
two times each. Considering severe drought, all stations experienced the same drought
event eight times during the statistical period, and we concluded that the fourth station
had the most intense number of drought events and longest periods among others.
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Figure 3. The simulated LSTM precipitation model of Alberta province from 4 synoptic stations,
which depicts the stations (a–d) with an 80-20 split sampling approach for model training and
validation, in which the split points are shown as red dots in the figure.

3.2. Statistical Downscaling

The simulation procedure was conducted utilizing an LSTM network, as depicted in
Figure 3, with the primary objective of evaluating the suitability of this network for the task
at hand.

This epoch utilized a hyperbolic tangent activation function, a batch size of 16, the
incorporation of six hidden layers, and assessment using RMSE and DC as evaluation
metrics. The dataset was partitioned into two subsets: 80% for training and 20% for testing
purposes. The outcomes of the simulation procedure are tabulated in Table 1.
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Table 1. The training and validation accuracy of the LSTM model.

Stations Evaluating Criteria Training Validation

Station 1
DC 0.71 0.69

RMSE (mm) 15.61 18.91

Station 2
DC 0.81 0.78

RMSE (mm) 13.54 14.95

Station 3
DC 0.79 0.74

RMSE (mm) 13.90 15.41

Station 4
DC 0.68 0.58

RMSE (mm) 18.38 19.44

4. Conclusions

Drought, a significant and frequently recurring natural disaster, has detrimental effects
on human life. This study aimed to investigate the temporal patterns of drought events
spanning from short to long durations in Alberta, Canada. The research utilized the SPI-3,
SPI-6, and SPI-12 indices and applied deep-learning LSTM models to simulate Alberta,
Canada’s, climate. Data from four synoptic weather stations within the study area (1979 to
2014) were used, with an 80-20 split sampling approach for model training and validation.
The findings demonstrate the feasibility of employing the LSTM model technique for
investigating drought occurrences in Alberta’s climate conditions. Additionally, the study
noted that as the SPI magnitude increases, there is a noticeable increase in both the intensity
and duration of drought incidents, especially within the southern region of Alberta.
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