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Abstract: In this paper, we develop a three-species food web model that incorporates the use of
interactions between diseased predator–prey models. The logistically growing prey populations are
susceptible and diseased prey. Prey populations are assumed to grow logistically in the absence of
predators. We investigate the effect of fear on susceptible prey through infected prey populations. In
Crowley–Martin-type interactions, it is assumed that interdependence between predators happens
regardless of whether an individual predator is searching for prey or handling prey at the time. Also,
the prey harvesting of susceptible and infected prey has been considered. The existence of all possible
equilibrium points for biological systems has been established. The criteria for the local and global
stability of equilibrium points are examined. Additionally, we look at Hopf-bifurcation analysis for
the suggested model in relation to the existence of harvesting rate (h1). Numerical simulations are
provided in order to explain the phenomenon and comprehend the complex interactions between
predators and prey.

Keywords: eco-epidemiological model; Crowley–Martin functional response; prey harvesting and
impact of fear; stability analysis; Hopf-bifurcation

1. Introduction

The predator–prey models developed by Lotka [1] and Volterra [2] are regarded as the
earliest developments in contemporary mathematical ecology in coupled systems of non-
linear differential equations. Since Kermack and Mckendrick’s pioneering work on SIRS, [3],
epidemiological models have attracted much interest from researchers. Mathematical
modeling of predator–prey interactions, known as “functional response,” is among the
most important factors in predator–prey population modeling. Crowley–Martin functional
responses take into account both prey and predators. In the recent era, some eminent
authors, [4–7], have studied to understand the importance and interactions of prey. To
make the model system more realistic and feasible in the ecosystem, they incorporated
some functional responses, i.e., Crowley–Martin-type functional responses. Kadhim and
Azhar [8] use a type II Holling function to represent two disease types in a predator
population model with a linear functional response. In [9], a nonlinear analysis of a discrete
effects predator–prey model is investigated. Prey refuge and prey harvest [10,11], with
ratio-dependent and Holling type II functional responses. Several investigations have
been conducted on the dynamic behavior of Crowley–Martin diseased predator–prey
models. To our knowledge, only a few researchers have looked into three-species prey–
predator models that take into account species interactions, including Crowley–Martin
disease in prey populations. This study examines how fear affects a Crowley–Martin eco-
epidemiological model with prey harvesting. The rest of the paper is structured as follows:
In Section 2, we describe how the study’s model formation was created. In Sections 3
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and 4, we talk about boundary equilibrium points and their stability. In Section 5, the
Hopf-bifurcation is the positive equilibrium point E∗(u∗, v∗, w∗). Numerical simulations of
the suggested model are examined in Section 6. The paper is concluded in Section 7, which
also discusses the biological consequences of our mathematical findings.

2. Mathematical Model Formation

The model explains the relationship between the structure of the infected prey and
the following equations. The proposed framework was used to discover a non-linear
prey–predator mathematical model.

dS
dT = RS

1+ρI (1 −
S+I

K )− α1SI
a1+S − β1SP

(1+η1S)(1+µ1P) − H1E1S,
dI
dT = α1SI

a1+S − D1 I − b1 IP
(1+η1 I)(1+µ1P) − H2E2 I,

dP
dT = −D2P + cb1 IP

(1+η1 I)(1+µ1P) +
cβ1SP

(1+η1S)(1+µ1P) ,

 (1)

and the positive conditions are described as S0 ≥ 0, I0 ≥ 0 and P0 ≥ 0.
The Table 1 displays the specific biological meanings of the parameters.

Table 1. Biological representation of the model.

Parameters Biological Representation

R, K Intrinsic rate of prey population increase, Ecological carrying capacity.
ρ, α1 Level of fear, Infection rate.

S, I, P Susceptible Prey, Prey with infection, Predator.
a1, β1 The constant for half-saturation, Vulnerable prey to predator’s consumption rate.
η1, µ1 Time for handling a predator, Interaction between predators on a large scale.

H1, H2, E The catchability coefficient of the susceptible prey, Infected prey, Harvesting effort.
D1, D2 Diseased prey, Predator population death rate.

b1, c Capture rate by predator, Prey to predator consumption rate.

The condition for the impact of fear is F(ρ, i) = 1
1+ρi . This refers to the infected’s

fear effect on susceptible prey. Here, f is the amount of fear. It is appropriate to modify
the variables as follows in order to decrease the number of systems (1) variables s = S

K ,
i = I

K , p = P
K , and to consider the dimension time t = λKT. Now, we apply the following

transformations. r = R
λK , α = α1

λK , a = a1
K , β = β1

λ , η = η1K, µ = µ1K, b = b1
λ , h1 = H1E1

λK ,
h2 = H2E2

λK , d = D1
λK , δ = D2

λK . Equation (1) can be represented in dimensionless form using
the above transformations.

ds
dt = rs

1+ρi (1 − s − i)− αsi
a+s −

βsp
(1+ηs)(1+µp) − h1s, s(0) ≥ 0,

di
dt = αsi

a+s − di − bip
(1+ηi)(1+µp) − h2i, i(0) ≥ 0,

dp
dt = −δp + cbip

(1+ηi)(1+µp) +
cβsp

(1+ηs)(1+µp) , p(0) ≥ 0,

 (2)

3. Existence of Equilibrium Points

The model (2) exhibits the following equilibrium points based on observation:

1. E0(0, 0, 0) is the trivial equilibrium point.
2. E1(s, 0, 0) is the boundary equilibrium point exists if h1 < r, where s = r−h1

r .

3. E2(ŝ, î, 0) is the without predator equilibrium point, where ŝ = a(d+h2)
α−d−h2

,

î = −R2±
√

R2
2−4R1R3

2R1
. Here, î is the unique positive root of the equation

R1 î2 +R2 î +R3 = 0, with R1 = ρ(α− d− h2)
2,R2 = (α− d− h2)[a(r + h1ρ) + (α−

d − h2)],R3 = a[ar(d + h2)− (r − h1)(α − d − h2)].
It is observed that î is the unique positive root if d + h2 < α, h1 < r and α − (d + h2) <
ar(d+h2)

r−h1
. E2 exists for d + h2 < α, h1 < r.
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4. The infection-free equilibrium point E3(s̄, 0, p̄), where s̄ = δ(1+µp)
cβ−δη(1+µp) ,

p̄ = (1+ηs)(r(1−s)−h1)
β−µ(1+ηs)(r(1−s)−h1)

. Thus, the conditions must exist for the infection-free equi-

librium point E3 are δη(1+µp)
c < β and r(1 − s)− h1 < β

µ(1+ηs) (assume h1 < r(1 − s)
and s < 1).

5. The endemic equilibrium point E∗(s∗, i∗, p∗), where s∗ = δ(1+ηi∗)(1+µp∗)−bci∗

bcηi∗+(1+ηi∗)(cβ−δη(1+µp∗)) ,

i∗ = b(a+s∗)p∗−(1+µp∗)[αs∗−(d+h2)(a+s∗)]
η(1+µp∗)[αs∗−(d+h2)(a+s∗)] , p∗ =

(1+ηs∗)[ r(1−s∗−i∗)
1+ρi∗ − αi∗

a+s∗ −h1]

β−µ(1+ηs∗)[ r(1−s∗−i∗)
1+ρi∗ − αi∗

a+s∗ −h1]
. Thus, the

conditions must exist for the endemic equilibrium point E∗ are δη(1+µp∗)
c < β, d+ h2 <

αs∗
a+s∗ , r(1−s∗−i∗)

1+ρi∗ < αi∗
a+s∗ + h1 +

β
µ(1+ηs∗) .

4. Stability Analysis

In order to determine local stability around various equilibrium points, we compute
the Jacobian matrix. At each given point (s, i, p), the Jacobian matrix is given by

J(E) =

L11 L12 L13
L21 L22 L23
L31 L32 L33

 .

where, L11 = r
1+ρi (1 − 2s − i)− aαi

(a+s)2 −
βp

(1+ηs)2(1+µp) − h1,L12 = − rs(ρ(1−s)+1)
(1+ρi)2 − αs

a+s ,

L13 = −βs
(1+ηs)(1+µp)2 ,L21 = αai

(a+s)2 ,L22 = αs
a+s −

bp
(1+µp)(1+ηi)2 − d− h2,L23 = − bi

(1+ηi)(1+µp)2 ,

L31 = βcp
(1+ηs)2(1+µp) ,L32 = bcp

(1+ηi)2(1+µp) ,L33 = −δ + bci
(1+ηi)(1+µp)2 +

βcs
(1+ηs)(1+µp)2 .

Theorem 1. The trivial equilibrium point E0(0, 0, 0) is always unstable.

Proof.

J(E0) =

r − h1 0 0
0 −d − h2 0
0 0 −δ

 .

Here, the eigenvalues of J(E0) are r − h1, −d − h2, −δ. Hence, E0 is locally asymptoti-
cally stable only if r < h1 and unstable otherwise.

Theorem 2. E1(
r−h1

r , 0, 0) is locally asymptotically stable if α(r − h1) < (d + h2)(ar + (r − h1))
and βc(r − h1) < δ(r + η(r − h1)).

Proof.

J(E1) =

M1 M2 M3
0 M4 0
0 0 M5

 .

where M1 = −r + h1,M2 = − rs(1+ρ(1−s))
(1+ρi)2 − αs

a+s ,M3 = − βs
1+ηs ,M4 = α(r−h1)

ar+(r−h1)
− d −

h2,M5 = −δ + cβ[ r−h1
r+η(r−h1)

]. Therefore, eigenvalues of J(E1) are h1 − r, α(r−h1)
ar+(r−h1)

− (d +

h2), and − δ + cβ[ r−h1
r+η(r−h1)

]. If λ1 < 0 i.e., r < h1, λ2 < 0, i.e., α(r − h1) < (d + h2)(ar +
(r − h1)) and λ3 < 0, i.e., βc(r − h1) < δ(r + η(r − h1)). Thus, E1 is locally asymptotically
stable if α(r − h1) < (d + h2)(ar + (r − h1)) and βc(r − h1) < δ(r + η(r − h1)).

Theorem 3. E2(ŝ, î, 0) is locally asymptotically stable if X11 > 0, X12 > 0 and δ > bcî
1+η î

+ βcŝ
1+ηŝ .
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Proof.

J(E2) =

N1 N2 N3
N4 N5 N6
0 0 N7

 .

where, N1 = r(1−2ŝ−î)
1+ρî

− aαî
(a+ŝ)2 − h1,N2 = − rŝ(1+ρ(1−ŝ))

(1+ f î)2 − αŝ
a+ŝ ,N3 = − βŝ

1+ηŝ ,N4 = αaî
(a+ŝ)2 ,

N5 = αŝ
a+ŝ − (d + h2),N6 = − bî

1+η î
,N7 = −δ + bcî

1+η î
+ βcŝ

1+ηŝ .

Therefore, the characteristic equation of J(E2) is (N7 − λ)(λ2 + X11λ + X12) = 0,
where X11 = −(N1 +N5) and X12 = N1N5 −N2N4.

In the above characteristic equation, we obtain one of the eigenvalue is N7, which is
negative as δ > bcî

1+η î
+ βcŝ

1+ηŝ and the other two eigenvalues should be negative if X11 > 0

and X12 > 0.
Hence, E2 is locally asymptotically stable if X11 > 0, X12 > 0 and δ > bcî

1+η î
+ βcŝ

1+ηŝ .

Theorem 4. The diseased-prey free equilibrium point E3(s̄, 0, p̄) is locally asymptotically stable if
Y11 > 0, Y12 > 0 and d + h2 > αs̄

a+s̄ −
bp̄

1+µ p̄ .

Proof.

J(E3) =

P1 P2 P3
0 P4 0
P5 P6 P7

 .

where P1 = r(1 − 2s̄)− β p̄
(1+ηs̄)2(1+µ p̄) − h1,P2 = −rs̄(1 + f (1 − s̄))− αs̄

a+s̄ ,

P3 = − βs̄
(1+ηs̄)(1+µ p̄)2 ,P4 = αs̄

a+s̄ −
bp̄

1+µ p̄ − (d + h2),P5 = βcp̄
(1+ηs̄)2(1+µ p̄) ,P6 = bcp̄

1+µ p̄ ,

P7 = −δ + βcs̄
(1+ηs̄)(1+µ p̄)2 . Now, the characteristic equation for J(E3) is

(P4 − λ)(λ2 + Y11λ + Y12) = 0, where Y11 = −(P1 + P7) and Y12 = P1P7 −P3P5.

In the above characteristic equation, we obtain one if the eigenvalue is P4, which is
negative as d + h2 > αs̄

a+s̄ − ( bp̄
1+µ p̄ ) and the other two eigenvalues should be negative if

Y11 > 0 and Y12 > 0. Therefore, E3(s̄, 0, p̄) is locally asymptotically stable if d + h2 >
αs̄

a+s̄ − ( bp̄
1+µ p̄ ), Y11 > 0, Y12 > 0, otherwise the system (2) will be unstable.

Theorem 5. E∗ is locally asymptotically stable if Z1 > 0, Z3 > 0, and Z1Z2 −Z3 > 0.

Proof.

J(E∗) =

Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

 .

where, Q11 = − rs∗
1+ρi∗ +

αs∗i∗
(a+s∗)2 +

ηβs∗p∗

(1+ηs∗)2(1+µp∗) ,Q12 = − rs∗(1+ρ(1−s∗))
(1+ρi∗)2 − αs∗

a+s∗ ,

Q13 = − βs∗

(1+ηs∗)(1+µp∗)2 ,Q21 = αai∗
(a+s∗)2 ,Q22 = ηbi∗p∗

(1+ηi∗)2(1+µp∗) ,Q23 = − bi∗
(1+ηi∗)(1+µp∗)2 ,

Q31 = βcp∗

(1+ηs∗)2(1+µp∗) ,Q32 = bcp∗

(1+ηi∗)2(1+µp∗) ,Q33 = − µbci∗p∗

(1+ηi∗)(1+µp∗)2 −
µβcs∗p∗

(1+ηs∗)(1+µp∗)2 .
The characteristic equation is

Z3 + Z2λ + Z1λ2 + λ3 = 0. (3)

where Z1 = −(Q11 +Q22 +Q33),
Z2 = −(Q12Q21 +Q13Q31 +Q23Q32 −Q11Q22 −Q11Q33 −Q22Q33),
Z3 = −(Q11Q22Q33 +Q12Q23Q31 +Q13Q21Q32 −Q13Q31Q22 − Q12Q21Q33 −Q11Q23Q32).
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According to the Routh–Hurwitz criterion, Z1, Z3, and Z1Z2 − Z3 must all be positive,
and the characteristic of all the roots must be negative. Hence, E∗ is locally asymptotically
stable.

Global Stability Analysis

Theorem 6. If E∗ is the endemic equilibrium point is globally asymptotically stable in G =
{(s, i, p) : s > s∗, i > i∗ and p > p∗) or s < s∗, i < i∗ and p < p∗}.

Proof. A positive Lyapunov function is defined as L1(s, i, p) = (s − s∗ − s∗ln
s
s∗
) + L2(i −

i∗− i∗ln
i
i∗
)+ L3(p− p∗− p∗ln

p
p∗

), where L2, L3 are positive constants. Here, L1(s, i, p) ≥ 0

since ψ − 1 ≥ ln ψ for ψ > 0 and L1(s∗, i∗, p∗) = 0.
Differentiating L1 with respect to t, we obtain

dL1

dt
=(

s − s∗

s
)

ds
dt

+ L2(
i − i∗

i
)

di
dt

+ L3(
p − p∗

p
)

dp
dt

=⇒ (s − s∗)[
r(1 − s − i)

1 + ρi
− αi

a + s
− βp

(1 + ηs)(1 + µp)
− h1]

+ (i − i∗)L2[
αs

a + s
− d − h2 −

bp
(1 + ηi)(1 + µp)

] + (p − p∗)L3[−δ +
cbi

(1 + ηi)(1 + µp)
+

cβs
(1 + ηs)(1 + µp)

].

dL1

dt
=− (s − s∗)[r(

s + i
1 + ρi

− s∗ + i∗

1 + ρi∗
) + α(

i
a + s

− i∗

a + s∗
) + β(

p
(1 + ηs)(1 + µp)

− p∗

(1 + ηs∗)(1 + µp∗)
)]

− L2(i − i∗)[b(
p

(1 + ηi)(1 + µp)
− p∗

(1 + ηi∗)(1 + µp∗)
)− α(

s
a + s

− s∗

a + s∗
)]− L3(p − p∗)c

[b(
ηµ(i∗p − i∗p∗)− µ(ip∗ − i∗p)− (i − i∗)
(1 + ηi)(1 + µp)(1 + ηi∗)(1 + µp∗)

) + β(
ηµ(s∗p − s∗p∗)− µ(sp∗ − s∗p)− (s − s∗)

(1 + ηs)(1 + µp)(1 + ηs∗)(1 + µp∗)
)].

Now, we see that dL1
dt ≤ 0. Whenever G = {(s, i, p) : s > s∗, i > i∗ and p > p∗)

or s < s∗, i < i∗ and p < p∗} and Consequently, for all solutions in G, L is a Lyapunov
function.

5. Hopf-Bifurcation Analysis

Theorem 7. If the critical value for the bifurcation parameter h1 is exceeded, the model (2) will
experience the Hopf-bifurcation. The following Hopf-bifurcation requirements are present for
h1 = h∗1 ,

1. U (h∗1)V(h∗1)−W(h∗1) = 0,
2. d

dh1
(Re(S(h1)))|h1=h∗1

̸= 0, where S is the zeros of the characteristic equation corresponding
to the non-negative equilibrium point.

Proof. For h1 = h∗1 , let the characteristic Equation (3)

=⇒ (S2(h∗1) + V(h∗1))(S(h∗1) + U (h∗1)) = 0. (4)

=⇒ ±i
√
V(h∗1) and −U (h∗1). (5)

The following transversality requirement must be satisfied in order to achieve the
Hopf-bifurcation at h∗1 = h1. d

dh1
(Re(S(h1)))|h1=h∗1

̸= 0. For every h1, the general roots of
the form S1(h1) = a(h1) + ib(h1), S2(h1) = a(h1)− ib(h1), and S3(h1) = −U (h1). Now,
we check the condition d

dh1
(Re(Sj(h1)))|h1=h∗1

̸= 0, j = 1, 2. Let S1(h1)= a(h1) + ib(h1) in
(4), we obtain ζ1(h1) + iζ2(h1) = 0, where
ζ1(h1) = a3(h1) + a2(h1)U (h1)− 3a(h1)b2(h1)− b2(h1)U (h1) + a(h1)V(h1) + U (h1)V(h1),
ζ2(h1) = 3a2(h1)b(h1) + 2a(h1)b(h1)U (h1)− b3(h1) + b(h1)V(h1).

dζ1
dh1

= Ψ1(h1)a′(h1)− Ψ2(h1)b′(h1) + Ψ3(h1) = 0, (6)
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dζ2
dh1

= Ψ2(h1)a′(h1) + Ψ1(h1)b′(h1) + Ψ4(h1) = 0, (7)

where Ψ1(h1) = 3a2(h1) + 2a(h1)U (h1)− 3b2(h1) + V(h1),
Ψ2(h1) = 6a(h1)b(h1) + 2b(h1)U (h1), Ψ3(h1) = a2(h1)U ′(h1) − b2(h1)U ′(h1) +W ′(h1) +
V ′(h1)a(h1), Ψ4(h1) = 2a(h1)b(h1)U ′(h1) + b(h1)V ′(h1). By multiplying (6) and (7) in
Ψ1(h1) and Ψ2(h1), respectively,

a′(h1) = −Ψ1(h1)Ψ3(h1)+Ψ2(h1)Ψ4(h1)

Ψ2
1(h1)+Ψ2

2(h1)
. (8)

Substituting a(h1) = 0 and b(h1) =
√
V(h1) at h1 = h∗1 on Ψ1(h1), Ψ2(h1), Ψ3(h1) and

Ψ4(h1) we obtain Ψ1(h∗1) = −2V(h∗1), Ψ2(h∗1) = 2
√
V(h∗1)U (h∗1), Ψ3(h∗1) = −V(h∗1)U ′(h∗1)+

W ′(h∗1), Ψ4(h∗1) =
√
V(h∗1)V ′(h∗1). Equation (8), implies

a′(h∗1) =
W ′(h∗1)−(U (h∗1)V ′(h∗1)+V(h∗1)U ′(h∗1))

2(V2(h∗1)+U2(h∗1))
, (9)

if W ′(h∗1)− (U (h∗1)V ′(h∗1) + V(h∗1)U ′h∗1)) ̸= 0, which implies that d
dh1

(Re(Sj(h1)))|h1=h∗1
=

a′(h∗1) ̸= 0. j = 1, 2, and S3(h∗1) = −U(h∗1) ̸= 0. If W ′(h∗1)− (U (h∗1)V ′(h∗1)+V(h∗1)U ′(h∗1)) ̸=
0, is ensured if the transversality criterion holds, and at this point, the model (2) enters the
Hopf-bifurcation at h1 = h∗1 .

6. Numerical Analysis

We show some numerical simulations of the model (2) in this section. To accomplish
this, we use Diethelm et al.’s predictor–corrector approach to solve the proposed model.
The system (2) parameter values are r = 2, α = 0.7, a = 0.6, β = 0.2, η = 0.1, µ = 0.1,
d = 0.1, b = 0.55, h2 = 0.1, δ = 0.1, c = 0.5, ρ = 0.2, h1 = 0.08. From Theorem 5, the positive
equilibrium point E∗(0.698622, 0.13125, 0.336204) exists for 0.01 < h1 < 0.3, and is locally
asymptotically stable.

Figure 1a Time analysis for the system (2) for h1 = 0.08. Figure 1b Phase portrait of the
system at E∗. Figure 2a,b Susceptible and infected prey populations with different values
for h1 = 0.01, 0.08, 0.2, 0.3. It shows that increasing the harvesting rate of susceptible prey
leads to a decrease in the population of vulnerable prey and predators while increasing the
population of diseased prey.

Figure 1. (a) Time analysis for the system (2) for h1 = 0.08. (b) Phase diagram of the model system
E∗.
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Figure 2. The population concentrations of susceptible prey (a) and infected prey (b) populations
with different values for h1 = 0.01, 0.08, 0.2, 0.3.

7. Conclusions

We investigated a three-species food-web model that involved the use of the inter-
actions between diseased prey–predator model. The local and global stability of (2) is
used for each set of biologically possible equilibrium points in the model. It is used to
modify the harvesting rate (h1) and the level of fear (ρ) as control parameters. In addition,
we investigated the stability analysis of the model (2) and studied the Hopf-bifurcation
phenomenon. As a result, we found that modifying the harvesting rate h1 significantly
affects the stability of the system (2). The analytical and numerical findings demonstrate
that the harvesting rate has a significant impact on every population. A decrease in the
population of susceptible prey and an increase in infected prey population density are the
effects of increasing the harvesting rate. This study shows the complex behavior of the
proposed model.
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