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Abstract: The inherent complexity of the Raman spectra of biomedical samples reflects the intricate
molecular composition and intermolecular interactions of these diverse systems. Unraveling the
complexities of biological Raman spectra is essential for bioscience and bioengineering research
because it provides insight into cellular processes, disease states, and drug interactions. For the
effective analysis of such complex data, robust and cutting-edge software is required that provides
sophisticated algorithms for data preprocessing, thereby enhancing the signal-to-noise ratio and re-
vealing hidden spectral information. In addition, novel applications of this type may include machine
learning algorithms for automated clustering analysis, enabling the identification of biomolecules
and their conformational changes in diverse biological specimens. We present a Python 3 package
built around popular scientific Python libraries that aims to provide Raman spectroscopists with
user-friendly programming tools for the analysis of complex biomedical Raman data.
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1. Introduction

Raman spectroscopy is a type of vibrational spectroscopy that relies on the inelastic
scattering of light (Raman scattering) upon its interaction with the vibrational modes of
a Raman-active molecule. It is a technique that is widely used because it allows for the non-
destructive study and molecular characterization of both organic and inorganic materials,
in either solid or liquid states or in solutions, with minimal to no preparation prior to
measurement [1]. Its ability to perform rapid measurements and the low interference from
water molecules make it an excellent technique for studying wet tissues and also make
it suitable for in vivo measurements [2]. Raman spectra contain characteristic vibrational
information that can be used for the identification and quantification of the compounds
present in a sample, as well as for the determination of its chemical composition. This
information provides, in essence, the molecular fingerprint of the substance. Due to its
versatility, ease of use, and ability to provide both qualitative and quantitative results,
Raman spectroscopy has evolved to be a valuable analytical tool in biomedical applications.

Raman scattering is a weak phenomenon, with only a fraction of the photons incident
to a substance undergoing Raman scattering. This results in the signal being weak and hard
to distinguish from background noise, which can occur due to the instruments and detectors
used, the environment, and sample impurities, among other factors [3]. Additionally,
Raman spectra are influenced by fluorescent molecules that are present in a sample. This
influence has the form of background signal, which can be stronger than the Raman signal
and overlap with it, obscuring and deforming the Raman peaks [4]. Both factors can lead
to spectra with a low signal-to-noise ratio (SNR).

Addressing the issue of background fluorescence in biological samples may require
several strategies. These include selecting an appropriate excitation wavelength, using the
anti-Stokes segment of a Raman spectrum, and utilizing techniques such as photobleaching,
in which the sample is subjected to prolonged irradiation. However, it is worth noting
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that the latter approach is not commonly employed with biological samples, mostly due
to the fact that photobleaching may harm the samples due to the high radiation intensity
required and the extended duration of irradiation [5]. As a standard practice, computational
techniques are employed to denoise and eliminate the background fluorescence from
Raman spectra. This procedure, commonly referred to as “preprocessing”, is undertaken
with the objective of enhancing the SNR before engaging in further analysis [6].

Here, we present a Python 3 package built around some of the most popular scientific
Python libraries that aims to provide Raman spectroscopists with user-friendly program-
ming tools for the preprocessing and analysis of complex biomedical Raman data. To briefly
demonstrate the package’s usage, we will use the Raman spectra of bone collected from the
tibias of healthy and osteoporotic rabbits.

2. Materials and Methods
2.1. Python Package Overview

The code written for Python 3.7 and later versions allows the user to preprocess Raman
spectra and deconvolute complex Raman bands, as well as apply Principal Components
Analysis (PCA) and Partial Least Squares Regression (PLSR) to Raman data. This package
is primarily developed to be run in Jupyter Notebooks and depends on Pandas 1.0+ [7],
matplotlib 3.0+ [8], NumPy 1.19+ [9], seaborn 0.11+ [10], SciPy 1.5.0+ [11], scikit-learn
0.23+ [12], and Rohan Isaac’s (rohanisaac) spc module [13].

The core component of the code is the Pandas dataframe. Dataframes are versatile data
structures that provide methods for reading from and writing to various file types, as well as
a significant number of methods that allow for advanced data manipulation and the visual
representation of data. Although they may lack in terms of processing speed and memory
efficiency when compared to NumPy arrays, Pandas dataframes in combination with Jupyter
Notebooks offer great data inspection capabilities and interactivity, which is of utmost impor-
tance when performing exploratory data analysis, as is usually required in Raman spectroscopy.
They also allow for easily performing batch-processing actions on spectra, which is essential
when handling large amounts of data, such as those usually obtained from Raman experiments.

The package contains methods for file operations on Raman data and for preprocessing
spectra. The preprocessing functionalities contain methods for de-spiking and smoothing
spectra, interpolating, differentiating, background subtraction using the SNIP algorithm [14],
and various normalization options. All preprocessing methods are available for use on either
NumPy arrays or Pandas dataframes. Additionally, classes for clustering analysis and modeling
have been implemented. More specifically, the package includes a Principal Components
Analysis (PCA) based on the decomposition.PCA scikit-learn class and a Partial Least Squares
(PLS) class built around the cross_decomposition.PLSRegression scikit-learn class. Both classes
can also be used for dimensionality reduction and provide methods that facilitate the creation
of publication-ready visualizations. The PLS class can also be used both for regression (PLSR)
and two-class discriminant analysis (PLS-DA). Finally, a peak deconvolution module has been
included that allows for fitting complex Raman bands with Gaussian or Lorentzian functions,
thus allowing for the extraction of additional information from the Raman spectra.

2.2. Samples

To assess the preprocessing capabilities of the software and substantiate a proof-of-concept
for spectroscopic evaluation and classification, we conducted PCA tests on samples obtained
from the tibias of five healthy and two osteoporotic 8-month-old female New Zealand rabbits.
Inflammation-mediated osteoporosis was induced in the osteoporotic rabbits by following the
method described by Kourkoumelis et al. [15]. Six slices were obtained from the diaphyses
(mainly consisting of cortical bone) of each tibia, symmetrically towards the proximal and distal
epiphyses. Raman spectra from three different points of the transverse surface of each slice,
separated approximately by 120◦, were obtained using a BWTEK i-Raman Plus spectrometer
operating at 785 nm, with a power output of 200 mW at the probe and signal collection time of
6 s. In total, 36 healthy and 36 osteoporotic Raman spectra were collected.
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3. Discussion

The required preprocessing steps and the subsequent application of PCA will be briefly de-
scribed. Both the healthy and osteoporotic rabbit spectra were combined in a single dataframe
with the Raman shift as the dataframe’s index and the sample names as the dataframe’s
columns. The spectra were subsequently cropped to the 380–1800 cm−1 region (fingerprint
region), treated to remove spikes that may have occurred mainly due to cosmic rays and
detector artifacts, and smoothed using a Savitzky–Golay filter. The background fluorescence of
each spectrum was then calculated using the SNIP algorithm and each calculated background
fluorescence was subtracted from the respective spectrum. Normalization of each spectrum to
the maximum intensity of the respective phosphate (v1 PO4

−3) Raman peak between 955 cm−1

and 965 cm−1 [16] concluded the preprocessing procedure, leading to spectra with a good SNR
and most of its fluorescence background removed. Preprocessing is a crucial step in Raman
analysis and the quality of the subsequent results strongly depends on it.

The programmed PCA class was then employed as a technique for the discrimination
of the two bone classes (healthy and osteoporotic). The result of this PCA is displayed in
a summarizing plot that contains a scree plot, the loading plots for the first three principal
components (PCs) and a three-by-three plot, containing PC score plots for the non-diagonal
elements and kernel density estimate (KDE) plots for the diagonal elements (Figure 1). The
PC score plots also include the 95% confidence ellipses of each sample class. The scree
plot indicates that the first three PCs explain most of the observed variance of the data
(77.91%). Adding more than three PCs does not represent a significant contribution to
the total variance. The PC1–PC2 and PC2–PC3 scores plots show a clear discrimination
between the healthy and osteoporotic samples along the PC2 axis. This is also especially
obvious in the KDE plots, where the PC2 KDE distributions for the healthy and osteoporotic
samples are clearly discriminated, while the KDE plots for PC1 and PC3 overlap heavily.
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Figure 1. PCA summary plot containing a scree plot and the first three PC loading plots. The shaded 
ellipses represent the 95% confidence ellipses of the classes, colored with their respective colors. The 
diagonal elements of the scores plots are the kernel density estimate (KDE) plots of the respective 
PC. 
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and expandable programming tool for preprocessing and analyzing Raman data. Using 
the Raman spectra of healthy and osteoporotic rabbit bones, we briefly described the basic 
functionality of the package and showed how it can be used to apply a principal compo-
nent analysis under a concise scheme of the relevant score plots and loading plots. 
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Figure 1. PCA summary plot containing a scree plot and the first three PC loading plots. The shaded
ellipses represent the 95% confidence ellipses of the classes, colored with their respective colors. The
diagonal elements of the scores plots are the kernel density estimate (KDE) plots of the respective PC.
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4. Conclusions

In this paper, we presented a Python 3 package that utilizes popular scientific Python
libraries with the goal of providing Raman scientists a user-friendly but mostly versatile
and expandable programming tool for preprocessing and analyzing Raman data. Using
the Raman spectra of healthy and osteoporotic rabbit bones, we briefly described the basic
functionality of the package and showed how it can be used to apply a principal component
analysis under a concise scheme of the relevant score plots and loading plots.
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14. Morháč, M.; Kliman, J.; Matoušek, V.; Veselský, M.; Turzo, I. Background Elimination Methods for Multidimensional

Coincidence γ-Ray Spectra. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 401,
113–132. [CrossRef]

https://doi.org/10.1016/j.vibspec.2011.08.003
https://doi.org/10.1117/1.JBO.23.7.071210
https://www.ncbi.nlm.nih.gov/pubmed/29956506
https://doi.org/10.1364/OE.21.031632
https://www.ncbi.nlm.nih.gov/pubmed/24514736
https://doi.org/10.1016/j.vibspec.2014.06.007
https://doi.org/10.1016/j.aca.2011.06.043
https://www.ncbi.nlm.nih.gov/pubmed/21907020
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41586-020-2649-2
https://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1038/s41592-019-0686-2
https://www.ncbi.nlm.nih.gov/pubmed/32015543
https://github.com/rohanisaac/spc/
https://doi.org/10.1016/S0168-9002(97)01023-1


Eng. Proc. 2023, 56, 28 5 of 5

15. Kourkoumelis, N.; Lani, A.; Tzaphlidou, M. Infrared Spectroscopic Assessment of the Inflammation-Mediated Osteoporosis
(IMO) Model Applied to Rabbit Bone. J. Biol. Phys. 2012, 38, 623–635. [CrossRef] [PubMed]

16. Khalid, M.; Bora, T.; Alghaithi, A.; Thukral, S.; Dutta, J. Raman Spectroscopy Detects Changes in Bone Mineral Quality and
Collagen Cross-Linkage in Staphylococcus Infected Human Bone. Sci. Rep. 2018, 8, 9417. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10867-012-9276-6
https://www.ncbi.nlm.nih.gov/pubmed/24615224
https://doi.org/10.1038/s41598-018-27752-z
https://www.ncbi.nlm.nih.gov/pubmed/29925892

	Introduction 
	Materials and Methods 
	Python Package Overview 
	Samples 

	Discussion 
	Conclusions 
	References

