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Abstract: Synchronous generators provide an inherent inertial response to frequency deviations
because of their huge revolving mass that is electro-mechanically tied to the electrical network.
Contrariwise, the power converters isolate the revolving mass of variable-speed wind turbines from
the electric network. Therefore, they are not able to provide an inherent inertial reaction to frequency
events on the electric network. This reduces the effective network inertia, which is essential for
marinating the power system’s frequency. To address this problem in cases of using a wind energy
doubly fed induction generator, this study introduces a kinetic energy recovery controller to the
rotor-side converter.

Keywords: variable-speed wind turbine (VSWT); frequency support; kinetic energy recovery

1. Introduction

A prevailing number of megawatt-class wind turbine generators (WTGs) are variable-
speed wind turbine (VSWT) generators [1–3]. VSWTs do not exhibit a natural inertial
response to frequency events due to their mechanical and electrical control systems being
decoupled [4–6]. Supplementary frequency control functions can be used to create a
connection between the power production of the WTGs and the network frequency [7].
The virtual synchronous machine (VSM) is a concept of controlling power electronic
interfaces on a power system to replicate the most desirable properties of a synchronous
machine [8–13]. VSM needs to use the virtual inertia using a buffer of enough stored
energy [8]. A systematic literature review (SLR) from 2015 to mid-2022 was conducted
by the authors to verify the validity of the study in this research field [11]. This paper
will present a kinetic energy recovery controller for wind turbines using DFIG to emulate
the inertial response of synchronous generators for grid frequency support. This paper
is organized as follows: Section 2 presents the mathematical modeling of the system’s
components and proposed controller, Section 3 presents a case study with the IEEE-14
bus system to verify and test the adaptive frequency controller, and Section 4 presents
the conclusions.

2. Mathematical Modeling

The nominal frequency of a transmission network is maintained by the balance be-
tween generation and consumption. The frequency stability of a network is a time-varying
attribute where a power system is expected to continue operating following a disturbance
that results in a severe imbalance between generation and load [1]. Traditional synchronous
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generators will naturally exhibit an inertial response [2]. This dynamic inertial response of
a synchronous generator can be described mathematically by the swing Equation (1).

2H
ωs

d2δ

dt2 = Pm − Pe (1)

where H is the inertia constant, ωs is the synchronous speed, and Pe and Pm are the
respective electrical and mechanical powers, respectively.It is found that the power that
can be extracted from the wind, Pm, is half the air density multiplied by the cube of wind
velocity [12,13] and can be expressed by (2), where ρ is the density of air; r the radius of the
wind turbine; Cp the wind turbine power coefficient; vwind the wind speed; λ the tip speed
ratio; and β the pitch angle.

Pm =
1
2
ρπr2v3

windCp(λ,β) (2)

The wind turbine power coefficient, Cp, has a maximum theoretical limit of 59.3%
called the Betz limit [14]. The wind turbine power coefficient shows the effect of the rotor
speed and pitch angle variation on the aerodynamic power [15]. The Tip Speed ratio, λ, can
be calculated by (3) [16], whereωr is the angular velocity of the wind turbine rotor.

λ =
ωrr

vwind
(3)

The pitch control is used to control the speed and the output power of the wind turbine
by adjusting the pitch angle. The pitch control system is shown in Figure 1 [17].
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Figure 1. Pitch control system block diagram. 
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Figure 1. Pitch control system block diagram.

The reference rotor speed,ωref, is 1.2 pu (with the synchronous rotational speed as the
base value) while the output power of the wind turbine is not less than 0.75 pu (with a base
value of the rated mechanical power of the wind turbine) [17]. The rotor reference speed,
ωref, has a minimum value of 0.7 pu.

ωref = −0.67(PDFIG)
2 + 1.42(PDFIG) + 0.51 (4)

The mechanical power and the electrical output power of the stator are computed
by (5), where Pm is the power transmitted to the rotor that has been captured by the wind
turbine, ωr is the rotational speed of the rotor, and Ps is the electrical output power of
the stator [18].

Pm = TmωrPs (5)
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For a lossless generator, the mechanical equation which describes the dynamic be-
havior of the rotor mechanical speed in terms of the mechanical torque, Tm, and the
electromagnetic torque, Tem, is given by (6) [19].

J
dωr

dt
= Tm − Tem (6)

This study will be using the average model since the focus of this study is the interac-
tion between the DFIG control system and the power system [20]. The frequency support
controller shown in Figure 2 emulates an inertial response by injecting additional power
during a frequency disturbance by increasing the d-axis rotor reference current.
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3. Case Study

The test system used in this study is based on the modified IEEE 14-bus system
used in [16], as shown in Figure 3. The modified IEEE 14-bus system consists of two
voltage zones, connected by T1, T2 and T3. Buses 1 through 5 form part of the 132 kV
zone while busses 6 through 14 form part of the 33 kV zone. The modified 14-bus system
includes synchronous generators, 11 static loads and an aggregated wind farm model. The
aggregated wind farm subsystem consists of 80, 1.5 MW class DFIG WTs. The effects of the
frequency support controller on consecutive disturbances are studied below.
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Case Study: Wind Speed Condition of 10 m/s with a Consecutive Disturbance

A generator generating 130 MW is tripped at 10 s and an additional generator is
tripped at 50 s with wind speed conditions of 10 m/s. Figure 4a shows the frequency
support of an MPPT-operated DFIG-based wind farm. The frequency nadir of the first
disturbance is 49.125 Hz, while the frequency nadir caused by the second disturbance is
49.288 Hz.
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Figure 4. (a) System frequency with no frequency support from DFIG-based wind farm. (b) System
frequency with frequency support from DFIG-based wind farm.

Figure 4b shows the results of the DFIG-based wind farm partaking in frequency
support. In Figure 4b, the first frequency nadir of 49.4 Hz is reached at 13.8 s following the
first disturbance at 10 s. The system frequency recovers to 49.62 Hz prior to the second
disturbance occurring and following this second disturbance at 50 s, a frequency nadir of
49.44 Hz is reached at 51.6 s.

The system frequency recovers 49.53 Hz at 79 s following the consecutive disturbances.
However, at this point, the system frequency succumbs to another frequency deviation as
the rotor speed reaches its minimum speed, and under speed logic reduces the frequency
support controller contribution to zero.

The WPP output of the MPPT-operated DFIG-based wind farm is shown in Figure 5a.
The MPPT-operated DFIG-based wind farm shows no significant increase in output power
when subjected to consecutive disturbances. The WPP output of the DFIG-based wind
farm with frequency support is shown in Figure 5b. The WPP output begins to rise rapidly
when the disturbance occurs at 10 s and peaks at 114.6 MW. After the peak, the WPP output
begins to decline as the system frequency approaches a new steady state but continues to
decline below the pre-disturbance WPP output power of 72.55 MW to 61.2 MW at 39.2 s
due to the rotor recovering its speed. When the second disturbance occurs at 50 s, the WPP
output power rises to 84.8 MW at 51.8 s to overcome the frequency disturbance caused
by the second generator tripping. The WPP output power begins to decline as the system
frequency begins to recover and continues to decline below 61.2 MW as the rotor has
deviated considerably from its optimal speed. The WPP output power reaches a minimum
output of 47.2 MW at 80.3 s as the under-speed logic negates the contribution frequency
support controller. The WPP output power has a non-monotonic increase to 69.1 MW as
the rotor speed recovers.
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Figure 5. (a) Case 3 WPP output with no frequency support from DFIG-based wind farm. (b) Case 3
WPP output with frequency support from DFIG-based wind farm.

The rotor speed of the MPPT-operated DFIG-based wind farm in Figure 6a shows no
significant deviation in rotor speed following two consecutive disturbances at 10 s and
at 50 s. However, the rotor speed of the DFIG-based wind farm with frequency support
shown in Figure 6b, begins to decrease when the disturbance occurs at 10 s to a minimum
speed of 0.87 pu at 28.9 s. The rotor speed recovers to a speed of 0.94 pu prior to the second
disturbance at 50 s which occurs during the rotor recovery phase. The rotor speed begins
to decline at the instance of the second as the kinetic energy is recovered to support the
system frequency. The rotor speed following the second disturbance reaches a minimum
speed of 0.75 pu at 79.6 s when the under-speed logic is triggered. This prevents any
further exchange of kinetic energy from the rotor to electrical energy and leads to the third
frequency drop to 49.45 Hz seen in Figure 6. The rotor recovers monotonically from its
minimum speed to 1.05 pu.
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Figure 6. (a) Rotor speed with no frequency support from DFIG-based wind farm. (b) Rotor Speed
with frequency support from DFIG-based wind farm.

4. Conclusions

The frequency support controller emulates an inertial response by temporarily raising
the active power output of the wind turbine generator during a frequency disturbance.
The additional energy required for the temporary overproduction of active power during a
frequency disturbance is obtained by recovering the kinetic energy of the spinning mass
of the wind turbine generator. Future work should aim to extend the frequency support
performance of the WTG in low wind conditions and varying wind speed conditions.
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