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Abstract: Amyloidosis is a systemic disease, leading to the disfunction of many organs. There
are several clinical and morphological forms of amyloidosis based on the organ-specific nature of
amyloid fibril deposition, which is found in the heart, brain, kidneys, spleen, liver, pancreas, thyroid
glands, bone marrow and intestines. The nature of organ damage correlates with the types of amyloid
fibrils. Thus, damage to the tissues of the heart and kidneys are the most significant factors affecting
mortality. The complexity of drug molecule discovery against amyloidosis is connected with the fact
that more than 30 proteins are involved in fibril formation. The fact that only two small molecules,
namely diflunisal and tafamidis, are clinically used nowadays underlines the complexity in this
field of research. The mechanism of action for both drugs include the stabilization of the tetrameric
form of transthyretin. The crucial approach for the discovery of drug molecules against cardiac
amyloidosis requires the use of predictive models. The main restrictions of most developed in vivo
models, however, are related to their reproducibility and cost. Therefore, an in silico approach
may be a relatively effective procedure to minimize time and difficulty during the drug discovery
process. In this paper, we collected key information which highlights the scope and limitations of the
development of an in silico approach.

Keywords: cardiac amyloidosis; amyloid fibrils; models; in vitro; in vivo; in silico

1. Introduction

Amyloid deposition in the heart tissues presents such symptoms as breathlessness
and fatigue, is caused by the progressive loss of elasticity of the myocardium [1], and leads
to cardiac failure.

The most known forms of cardiac amyloidosis are as transthyretin-related (ATTR) and
immunoglobulin light chain (AL) amyloidoses. In the case of the AL type, the median
survival of patients is half a year from the beginning of heart failure [2]. There are more
than 30 proteins involved in the cardiac amyloidosis development that make the devel-
opment of the in vitro and in vivo models quite difficult. The molecular mechanisms of
cardiac amyloidosis are still not clear; the most recent information about its mechanisms is
discussed in a recent review [3].

To obtain the markers of disease development and progression, a rather useful tool
is through the use of in silico models, which also have great potential for drug discovery
opportunity. The main basis for in silico model creation includes a collection of experimental
data describing the main indicators and possible mechanisms of the disease development.

In this review, we present an overview of the modern models developed for cardiac
amyloidosis and consider their scope and limitations, especially for in silico models.
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2. In Vivo Models

Most of the known animal and cell models are discussed in a recent review [4], wherein
the authors focused on ATTR amyloidosis. A summary of the main current models available
for studying ATTR amyloidosis is presented in Figure 1.
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Figure 1. Current models available for the study of ATTR amyloidosis. Various models for ATTR
amyloidosis include invertebrate, cell and vertebrate models. Key phenotypes and findings from
these models are indicated with proper references. Adapted from [4], with the permission from
Frontiers Media S.A., 2023.

This important review very well demonstrates that amyloidosis is a systemic disease
which affects several organs because unfolded TTR aggregates are found in the heart, pe-
ripheral nerves and other organs, which results in difficulties in modeling the development
of diseases, especially cardiac amyloidosis. This is well illustrated by the data cited in this
review, which demonstrate that a majority of the models are related to amyloid polyneu-
ropathy. The only example of a spontaneous development of ATTR cardiac amyloidosis is
that which was seen in several vervet monkeys, as indicated in this review.

Among the in vivo models, an article about the first transgenic mouse model of cardiac
AL amyloidosis, based on the insertion of the human pathogenic LC gene in the endogenous
mouse kappa locus, was previously published [5]. The transgenic strategy includes the
insertion of the human lg gene in the endogenous murine kappa locus (Figure 2).
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Figure 2. AL amyloidosis model. (A) Transgenic strategy: The insertion of the human lg gene in
the endogenous murine kappa locus, such as the naturally lg-producing (B) and plasma cells that
produce the human pathogenic lg in high amounts. To further increase the production of free LC,
normally observed in AL amyloidosis patients, these mice were backcrossed with another transgenic
strain, DH-LMP2A mice, characterized by a high number of plasma cells devoid of endogenous
HC. This strategy avoids the association of human LCs with endogenous murine HCs, leading to a
quasi-monoclonal expression of the free LC. (B) Serum-free LC levels compared to the corresponding
patient. (C) Congo red staining (polarized light) on heart section in AL transgenic mice. (D) The
same section as in (C), showing the colocalization of amyloid deposits with anti-human l LC antibody
(recognizing the constant domain). Adapted from [5], with permission from Elsevier, 2023.

The authors underline that AL amyloidosis was not developed under strong LC
production, because only the variable domain (IGLV6) was able to form fibrils, while a
full-length LC showed resistance against amyloid formation after single-injection fibrils
were found in the spleen, liver, the kidney and mainly in heart.

3. In Silico Models

It is important to have an indicator of cardiac tissue function, which is important
for treatment. Li et al. used mathematical models of the left ventricle derived from
routine clinical magnetic resonance imaging to find new markers and demonstrated the
agreements with clinical symptoms (double-blinded test in six out of the seven sample
cases). The following factors were evaluated in a group of amyloidosis patients before and
after treatment: the strains, stresses, p–V curve, LV shape and volume (Figure 3) [6].
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Figure 3. The CMR images for the reconstruction LV model in diastole. (a–d) are cine images at the
short-axis and three long-axis planes at the baseline scan, (e–h) are corresponding cine images at the
follow-up scan from the same patient. Reproduced from [6], with permission from Frontiers Media
S.A., 2023.

The authors underline that the results should be interpreted carefully, because many
factors have to be considered, and no single biomarker is able to provide a prediction due
to the complexity of the processes in the heart.

A random forest machine learning model was developed, and it was demonstrated
that the data of medical claims well identify patients with wild-type transthyretin amyloid
cardiomyopathy. The model was validated in three nationally representative cohorts
(9412 cases, 9412 matched controls) and a single-center electronic health record-based
cohort (261 cases, 39,393 controls) [7].

Based on combined factors such as age, gender, carpal tunnel syndrome, interven-
tricular septum in diastole thickness and low QRS interval voltages, with an area under
the curve (AUC) of 0.92, the model for ATTR-CA diagnosis has been developed (the score
had an AUC of 0.86). In all three of the following clinical validation cohorts, the model
demonstrated good diagnostic accuracy [8]: (1) hypertensive cardiomyopathy (n = 327);
(2) severe aortic stenosis (n = 105); and (3) heart failure with preserved ejection fraction
(n = 604).

A model based on the evaluation of circulating retinol-binding protein 4 (RBP4) concen-
tration was developed for the identification of ATTR V122I amyloidosis in elderly African
American patients [9]. The authors noted that RBP4 concentration may be considered as a
predictor marker of disease progression.

The number of diseases, which is associated with amyloid fibrils formation, is more
than 50.

A hybrid structure-based model (molecular dynamics simulations), describing the
conformational dynamics of monomers as well as the structure of fibrils, was developed
and named multi-eGO. This model considers the structure and kinetics of protein aggre-
gation, including the aggregation of thousands of monomers. Data about concentration
dependence and structural features of the fibrils formed are in good agreement with in vitro
and in vivo experimental data for transthyretin (Figure 4). This model may be quite useful
for the development of drugs against cardiac amyloidosis [10].
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Figure 4. TTR peptide aggregation kinetics in vitro. (A) Aggregation kinetics of the TTR105-115 pep-
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ent experiments analyzed via linear regression using Bol�mann sigmoidal equation is reported. (B) 

Log–log plot of the in vitro half times, �1/2, as a function of the initial monomer concentration. (C–

E) Electron micrographs of fibrils formed by TTR105-115 peptide incubated at 13 mM (C), 10 mM 

(D) or 7 mM (E) at 37 °C for 150 h. Scale bars correspond to 100 (C) or 200 (D,E) nm. (F) Representa-

tive TEM images of the six main fibrillar morphologies. Reproduced from [10], with the permission 

from National Academy of Science, 2023. 
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Figure 4. TTR peptide aggregation kinetics in vitro. (A) Aggregation kinetics of the TTR105-115
peptide at 13 mM, 10 mM and 7 mM are shown in magenta, orange and green, respectively. TTR
peptides at 37 ◦C were obtained via monitoring of ThT fluorescence. The mean value of three
independent experiments analyzed via linear regression using Boltzmann sigmoidal equation is
reported. (B) Log–log plot of the in vitro half times, τ1/2, as a function of the initial monomer
concentration. (C–E) Electron micrographs of fibrils formed by TTR105-115 peptide incubated at
13 mM (C), 10 mM (D) or 7 mM (E) at 37 ◦C for 150 h. Scale bars correspond to 100 (C) or 200 (D,E) nm.
(F) Representative TEM images of the six main fibrillar morphologies. Reproduced from [10], with
the permission from National Academy of Science, 2023.

Several other approaches such as the use of artificial intelligence for conducting cardiac
amyloidosis predictions were very recently reviewed [11].

4. Conclusions

The development of in silico models for the understanding of cardiac amyloidosis
mechanisms and pathology, as well as for drug target and biomarker discovery, face many
challenges, because these models do not recapitulate all symptoms, especially neurological
presentation. Nevertheless, several computer-based models are in good correlation with
clinical symptoms. In most cases, the predictive models were tested on a small cohort of
patients, and external validation in a larger, independent patient population is required.
Taking into account the complexity of disease mechanisms, a multi-target drug design
is required.
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