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Abstract: The present work is based on a mathematical model describing a single acoustic cavitation
bubble oscillating under an ultrasonic field of 200 and 300 kHz and an acoustic amplitude of 1.8 atm
within 1-butyl-3-methylimidazolium acetate. The model integrates the dynamics of bubble oscillation,
the thermodynamics applied to the interior of the bubble and at its interface, and the sonophysical
and sonochemical events occurring in the presence of dissolved cellulose in the ionic liquid. The
performed simulations shed light on the major physical effects of acoustic cavitation, namely the
shockwave and microjet, as well as the sonochemical effects in terms of the degradation rate of
the dissolved cellulose in the secondary reactional site, i.e., the interface. The predominance of the
effects and its dependency of the acoustic frequency is tackled from an energetic point of view. It
is demonstrated that 300 kHz offers the lowest heat flow across the bubble interface, lowering the
chances for the sonochemical degradation of cellulose, while 200 kHz offers a significant degradation
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rate, attaining 71.4 mol-dm—3-s71, as well as harsher microjets and shockwaves with powers of

3300 and 900 mW at collapse, respectively.

Keywords: ultrasounds; acoustic cavitation; [C4mim][CH3COQ]; cellulose; temperature; pressure;
sonochemistry; microjet; shockwave

1. Introduction

Several researchers have described the dissolution of cellulose in ionic liquid and
have offered diverse molecular theories. Most of them agree that cellulose dissolves when
anions make hydrogen bonds with it, but others have demonstrated that cellulose dissolves
in ionic liquids when an anion and a cation make hydrogen bonds with the hydrogen
and oxygen atoms of the cellulose, which are precisely positioned between the C6 and C3
hydroxyl groups of the nearby cellulose chain [1]. Moreover, according to several studies,
the exposure of the ionic liquid to ultrasounds revealed some interesting physical and
chemical effects that may be beneficial in terms of cellulose degradation [2]. Nonetheless,
the joint investigation of the sonophysical and sonochemical effects with this configuration
has not yet been performed, particularly through modeling and simulation. The present
paper proposes a numerical model describing the behavior of a single acoustic cavitation
bubble within [C4mim][CH3COOQO] in the presence of dissolved cellulose, with the aim
to evaluate the chemical and physical impact of sonication, under the specific acoustic
frequencies of 200 and 300 kHz, generally adopted in sonochemistry.

2. Numerical Model

1-Butyl-3-methylimidazolium acetate [C4min][CH3COOQ] is an ionic liquid character-
ized by a high cellulose solvation power [3,4]. In the present model, the gaseous medium is
saturated with argon. Despite the fact that only a limited number of studies have examined
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the solubility of argon in ionic liquids [5-8], the reported solubility rates are judged as suffi-
cient for creating gaseous inclusions and generating acoustic cavitation by a heterogeneous
nucleation process [9] when enough tensile strength is induced [10].

The ionic liquid was submitted to ultrasonication at 200 and 300 kHz of frequency,
and an acoustic amplitude of 1.8 atm, which is the lowest acoustic amplitude (under the
lowest temperature) that allows for the acoustic cavitation phenomenon and consequently
the expected chemical effects. The operating temperature was fixed at 353 K to attain an
acceptable value of dynamic viscosity of the ionic liquid. The ambient radii at the respective
acoustic frequencies were taken as 5 and 3.5 um. The oscillation of the bubble was governed
by the Keller-Miksis equation, as indicated in Equation (1).
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Safarov et al. [11] provided the physical parameters of 1-butyl-3-methylimidazolium
acetate at 353 K in relation to temperature. These properties include surface tension 6,
dynamic viscosity , density p;, and sound speed c.

Since 1-butyl-3-methylimidazolium acetate has a very low vapor pressure [12], argon
was assumed to be the only gas present in the bubbles. The initial pressure of the gas inside
the bubble, as determined by the mechanical equilibrium condition, is given by Equation (2).
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The energy balance applicable to the acoustic cavitation bubble considering its oscilla-

tion is given in Equation (3). It allows for the determination of the variation and distribution
of the temperature as a function of time and space.
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¢(t) represents the heat flow passing through the thermal boundary layer of the
width ¢, and its expression is based on the continuity of the thermal flow across the bubble
interface at each instant t, as seen in Equation (4).
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The isochoric molar heat capacity of argon Cy (T) and its thermal conductivity A(T),
appearing respectively in Equations (3) and (4), vary in function of the temperature of the
bulk volume of the bubble. Both are expressed as a polynomial form, as shown in [13].

The pressure of gases inside the bubble volume is expressed using the Van der Waals
state equation as shown in Equation (5).

n2a

(Pg + V2> (V —nb) = nR,T (5)

Due to the ionic liquid’s high order of magnitude thermal conductivity, which is
almost 10 times higher than that of argon [14,15], the resistance to thermal diffusion is
found on the gaseous side. As a result, the boundary layer of thermal diffusion is taken
into account on the gaseous side; Equation (6) [16] gives its width &. This equation includes
the thermal diffusivity x, which is temperature-dependent and depends on the density,
heat capacity, and thermal conductivity of argon.
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With the exception of the thin boundary layer with a width ¢ [17], it is assumed that
the temperature is spatially consistent throughout the majority of the bubble. Resolving
Equation (7) yields the radial distribution of temperature throughout the thermal boundary
layer (the result of the integration of Equation (4)) for each value of r between 0 and ¢.

5 2 -3 __ro@)
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The thermal effect caused by the hot spots at the bubble interface (the second reactivity
site), according to the two sites model [2], constitutes the seat of chemical reactions. The
bubble’s main body is thought to be chemically inert. The cellulose is anticipated to ther-
mally disintegrate in accordance with the process put forward by Diebold [18] and shown
in [19], i.e., when the bulk temperature is high enough and the surrounding temperature is
adequate to start pyrolysis reactions.

The chemical kinetics occurring in the second reactivity site is described as a chain
mechanism of first order reactions, with the molar yield of each species k being controlled
by Equation (8).
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In this equation, T, constitutes the temperature governing the chemical kinetics of the
decomposition of cellulose. This temperature varies spatially as a function of the bubble
radius 7, as shown in Equation (7), and the median value is considered to approximate the
conditions of the thermal decomposition of cellulose. The molar concentrations c of each
chemical species k involved in the mechanism are reported in the volume of the thermal
boundary layer of width ¢ shown previously. This volume is denoted V, and is given

in Equation (9). 3
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When the bubble collapses, a spherical shockwave is generated around the bubble
in the liquid medium. This shockwave can provoke changes in the transport properties,
by inducing a dispersion of molecules in the liquid phase and consequently promoting
mass transfer. The power emitted by the single acoustic cavitation bubble in the form of a
shockwave Ps is expressed by Equation (10).

SN2

P, = 4”% <R2R + 2RR2> (10)

Additionally, during the bubble collapse near a solid surface (cellulose particles), the

bubble loses its sphericity. A modification of the shape of the bubble is observed from the

original approximate sphere to a slender shape and then a flattened shape. At the final

stage, a microjet breaks the bubble wall near the solid and impacts towards it. Micro-jet
velocity is given by Equation (11) [20].
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The power of the exit P; is then shown in Equation (12) as a function of the jet
velocity v and the jet nozzle exit diameter / (taken as a third of the value of the bubble
diameter) [21,22].

1
p = 3 npelh203 (12)
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The system of non-linear and dependent differential equations (Equations (1), (3), and (8))
is simultaneously resolved with the non-linear equations (Equations (4)—(9)) using the
Ode23s solver of Matlab. The shockwave and microjet powers are then assessed according
to Equations (10) and (12).

3. Results and Discussion

3.1. Dynamics of Oscillation of the Acoustic Cavitation Bubble

Figure 1a shows the evolution of the argon bubble radius within the sonicated ionic
liquid [C4min][CH3COO] under both 200 and 300 kHz frequencies.
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Figure 1. Bubble radius (left (a)) and wall velocity (right (b)) as functions of reduced times under
200 and 300 kHz.

The results demonstrate that a 200 kHz frequency induces a harsher oscillation of the
bubble wall, achieving a maximum radius of almost 13 um, with an expansion ratio of 2.6,
vs. 2.18 under 300 kHz. During the collapse phase, the bubble contracts 3.81 folds under
200 kHz and 3.45 folds under 300 kHz. This trend is confirmed by the evolution of the
bubble wall velocity shown in Figure 1b, attaining two extremums of 36.5 and 20 m/s at
expansion and collapse, respectively, under 200 kHz.

3.2. Thermodynamics of the Acoustic Cavitation Bubble

The evolution of the bulk and interfacial temperatures is shown in Figure 2. As
predicted from the dynamics of the bubble oscillation, the highest temperature was attained
under 200 kHz, with 1600 K in the bulk volume and 1000 K at the interface, at the moment
of collapse. A 300 kHz frequency barely leads to 474 K at the interfacial zone, which limits
the sonochemical activity there under this acoustic condition.
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Figure 2. Bulk (left (a)) and interfacial (right (b)) temperatures as functions of reduced time under
200 and 300 kHz.
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As a result of the radius and temperature evolutions reported earlier, we noticed that
the highest bulk pressure was attained under 200 kHz with a value of 48 bar, as shown
in Figure 3. Though the bulk pressure does not directly affect the sonochemical process
of cellulose transformation, it shows that a 200 kHz frequency is more favorable for the
sonochemical decomposition of cellulose within the sonicated ionic liquid. This point will
be further discussed in the following section.
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Figure 3. Bulk volume pressure under 200 and 300 kHz.

3.3. Sonochemistry

Figure 4 shows the cellulose decomposition rate the molar yield of cellulose within
one acoustic cycle under a 200 kHz frequency. The decomposition rate attains its maximum
at the collapse, with a value of 71.4 mol/dm?®-s. Though this rate lasts almost 0.05 ps, it
allows the molar yield of cellulose to decrease by 9.77%.
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Figure 4. Cellulose decomposition rate and molar yield under 200 kHz.

3.4. Energetic Reading: Heat Transfer, Microjets and Shockwaves

The results related to the thermal flow across the interface exhibit a significantly
higher value under 200 kHz, which explains the higher interfacial temperature, as shown
in Figure 5a. The interface being the reactional site in the studied case, the prominent
sonochemical activity observed under 200 kHz is explained thermally by the more im-
portant thermal flow, with a peak exceeding 3 W at collapse (almost 6 folds higher than
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at 300 kHz). In terms of the physical effects, 200 kHz also results in harsher induced
shockwaves and microjets, with respective peak values of 0.9 and 3.3 W at collapse as
shown in Figure 5b,c. Hence, 200 kHz is both sonochemically and sono-physically more
promising for the decomposition of cellulose in ionic liquid.
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Figure 5. Thermal flow across the interface (upper left (a)), the power of the shockwave (upper right
(b)) and the power of the microjet (down (c)) under 200 and 300 kHz.

4. Conclusions

In the present study, the sonochemical and sonophysical effects induced by sonication
of the ionic liquid [C4mim][CH3COOQ] for the decomposition of cellulose were investigated
numerically. The modelling and simulation results revealed that the harsher dynamics of
bubble oscillation are achieved under 200 kHz, with expansion and collapse ratios of 2.6
and 3.81, respectively. The trend was confirmed by the bubble wall velocity and resulted in
higher temperature values both in the bulk volume of the bubble as well as the interfacial
region, which was the sonochemically active zone in the studied case. The simulation of one
acoustic cycle revealed that 9.77% of cellulose is decomposed under 200 kHz. The collapse
was also accompanied by shockwave and microjet effects, characterized by peak powers of
0.9 and 3.3 W, respectively, per bubble. Finally, 200 kHz sonication was demonstrated to
be sonochemically and sonophysically effective for the sono-decomposition of cellulose
dissolved in [C4mim][CH3COOQO].
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