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Abstract: The present study focuses on the electrochemical performance of polyethylene oxide
(PEO)-polymethyl methacrylate (PMMA) blended plasticized nanocomposite solid polymer elec-
trolytes (BPNSPEs) amid cadmium bromide (CdBr2) as a dopant salt along with a cerium oxide
(CeO2) nanofiller. Incredibly thin nanofilms of BPNSPE were signalized through distinct methods
of working in characterization studies, such as X-ray diffraction (XRD), Fourier-transform infrared
spectroscopy (FT-IR), ultraviolet-visible spectroscopy and scanning electron micrography (SEM).
The X-ray diffractograms (XRDs) confirmed the formation of the polymer electrolyte (PE) as well
as a decrease in the degree of crystalline characteristics in the BPNSPE sample, and the particle
dimension was calculated via the Debye–Scherer equation. The structural changes and formation of
complexes were inspected by Fourier-transform infrared spectroscopy (FT-IR), and ocular absorbance
scrutiny was accomplished by ultraviolet visible spectroscopy, whereas the morphological structure
was interpreted by scanning electron microg-graphical images. The existing work is intended to
increase the awareness of the significance of CeO2 nanofillers with the BPNSPE arrangement, which
is suitable for batteries and ionic devices.

Keywords: X-ray diffraction; cerium oxide; UV; SEM

1. Introduction

The nanotechnology concept features various branches of science, whereas the ac-
quired nanotechnology might encourage various sources of synthesized nanoparticles to
procure enormous utilizations in electronics, agriculture, chemical industries, etc. The
enduring development and comprehensive use of automobile gadgets are most significant
in the field of nanotechnology to increase the requirement for secondary batteries where the
electrical energy is stored [1]. Recently, polyethylene oxide polymers, which are ecologically
safe, have progressed significantly [2–4]. This field has expanded from the classical period,
and, in the modern period, scientists have concentrated on the development of polymer
electrolytes [5,6]. There are three types of polymer electrolytes (Pes), namely hydro gel
polymer electrolytes, liquid crystal polymers and blended composite polymers. Hydro
gel polymer electrolytes and liquid crystal polymers have high ionic conductivity but do
not have the ability to mitigate current issues when the positive electrode and negative
electrode of the electrolyte sample are interfaced [7]. So, to examine this problem, a blended
composite polymer electrolyte was taken into description. Blended composite PE is a form
of polymer, which includes salts and inorganic filers that are inert, but the non-conductive
constant is high in order to balance the potential by constraining the configuration of ion
pairs in the form of polymeric matrices [8].

Polyethylene oxide is established in the theory of electrolyte polymers, which can
break down assorted salts by appearing in the interactivity of EO, whatever is considered to
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be the most excellent electrolyte polymers, which are globally employed in battery studies.
Commonly, polyethylene oxide is a semi-crystalline polymer that exhibits superior ionic
conductivity and tremendous interfacial stability [9], but the stability of PEO decreases
at higher temperatures. Hence, to develop the thermal establishment and crystallinity of
PEO, it is blended with PMMA, which is an acrylic, amorphous polymer. In particular,
polymethyl methacrylate (PMMA), with its excessive tensile firmness, might be acceptable
to upgrade the mechanical solidity of the host polymer, and it is most compatible with
PEO in the melting state. In order to enhance the conductivity, new inorganic salt, namely
CdBr2, was utilized, in which Cd2+ ions interacted with ether oxygen (EO) of PEO in order
to increase the mobility of charge carriers. Several researchers attempted different ceramic
nanofillers, such as SiO2, Al2O3, ZnO and SnO2 [10–12], with the intention of increasing
the potential and standardized stability of the blended PE. Here, we utilized cerium oxide
(CeO2), which is one of the most favorable metal oxide nanofillers. It behaves as a UV
absorber and is globally applied in many fields, such as solar cells, catalysts, UV blockers,
photo degradation of organic pollution and electronic devices [13].

This assignment aims to acknowledge the morphological and spectral investigation
of BPNSPE by means of the cadmium bromide (CdBr2) compound and its additional
assimilation of the CeO2 nanofiller by increasing the ionic conductivity and firmness,
evaluated by using X-ray diffractograms, Fourier-transform infrared spectrum, ultraviolet-
visible spectrum, along with scanning electron micro graphical (SEM) investigations.

2. Exploration Characteristics
2.1. Chemicals Acquired

Chemicals like polyethylene oxide (PEO), whose molecular weight is 5 × 105, poly-
methyl methacrylate (PMMA) whose Mn value is 996,000, cadmium bromide (CdBr2) and
cerium oxide (CeO2) were bought from Sigma Aldrich for synthesis.

2.2. Manufacture of BPNSPE Nanofilm Arrangement

Nanofilms of BPNSPE were fused with 0.2 g of polyethylene oxide (PEO) and 0.1 g of
polymethyl methacrylate (PMMA) with 0.024 g of cadmium bromide (CdBr2) by the dissem-
ination of 5 wt. % cerium oxide (CeO2), whose compound size is less than 100 nm. PMMA
polymer was put together by placing them in a vacuum drying oven at 373 Kelvin over a
period of 15 min. Behind time, polyethylene oxide (PEO) and polymethyl methacrylate
(PMMA) were liquefied in usual solvent acetone (30 mL), succeeded by using unmediated
mixing for over an hour to produce a homogeneous fluid. The cadmium bromide (CdBr2)
sample was dried out using a vacuum drying oven at 373 Kelvin. Thereafter, the output
dissipated towards polymer blends and swirled for an hour. In that moment, 5 wt. % of
cerium oxide (CeO2) inorganic ceramic filler was added to the solid complex and mixed
for another 2 h, then poured in a washed Petri dish and parched under liberated air for
one day at room temperature. Over time, impulsively secured samples of PEO-PMMA-
CdBr2 5 wt. % of CeO2 were accomplished and safe-guarded in desiccators for further
scrutinization studies. A schematic depiction of the BPNSPE nanofilm is shown in Figure 1.

2.3. Idiosyncrasy Studies

The BPNSPE nanofilms were qualified in the recognition period, which is consum-
mated in the form of emissions through a Bruker X-ray diffraction appliance model in a
progressive way with copper kα, whose wavelength is 1.54 Angstrom, where its function
appears in 30 milli-ampere at 2 theta between angles of 10◦ and 80◦. Vibrational bands
entailed in the prototype were ascertained by collecting the data over a wide region in the
method of FTIR, which progressed by using the spectrophotometer model of Bruker Tensor
27. Likewise, the structural explication of the composite is induced by the spectrophotome-
ter apparatus of Perkin Elmer ultraviolet spectrophotometer (Waltham, MA, USA). The
morphological characteristics of BPNSPE composites were analyzed through Hitachi-S
3400N, which is illustrative of electron microscopy, and the compound’s fragmentation
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portrayal was accomplished by keeping the specimen in liquid N2, burnished with gold
particles over 30 s and manipulated with the electrical potential of fifteen Kilo Volts.
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Figure 1. Schematic illustration for the preparation of BPNSPE nanofilm.

3. Results and Discussion
3.1. Microstructure Scrutiny of Blended Plasticized Nanocomposite Solid Polymer Electrolytes
(BPNSPE)

The X-ray diffraction outline procured for PEO-PMMA-CdBr2 as well as PEO-PMMA-
CdBr2-5 wt. % CeO2 blended plasticized nanocomposite solid polymer electrolytes (BPN-
SPE) is shown in Figure 2. Highly intense and sharp Bragg reflection angles scrutinized
at 19.14◦ and 23.3◦ signified the semicrystalline characteristics of pure polyethylene oxide
ascribed to (120) and (112) hkl planes [14], whereas the less intense reflection peak at
13.6◦ [15] resembled the PMMA polymer, expressing its amorphous nature. The diffrac-
tion peak at 26.1◦ harmonized to the (101) hkl plane of cadmium bromide (CdBr2) salt
(JCPDS File No. 10-0438). The intensity and elevation of prominent peaks are diminished
in PEO-PMMA-CdBr2-5 wt. % CeO2 blended plasticized nanocomposite solid polymer
electrolytes (BPNSPEs), thus stipulating that the assimilation of CeO2 nanoparticles agitates
the crystalline zone, thereby increasing the disorderliness of the blended polymer elec-
trolytes. In addition, new reflection peaks were monitored at 2θ = 28.65◦, 33.17◦, 47.53◦ and
56.56◦, which matched (111), (200), (220) and (311) hkl miller indices ascribing face-centered
cubic unit cells of the CeO2 nanofiller, as substantiated by the JCPDS File No. 81-0792.
Thus, the depletion of intensity, emergence of new peaks and disorderliness of the blended
polymer electrolytes may lead to more conducting pathways, thus making the polymer
shapeless, thereby flourishing the finer transit of ions, as shown by Fourier-transform
infrared spectroscopic examinations.

L =
kλ

βcosθ
(1)
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Here, k is the Scherrer shape factor constant ~0.89, λ is the wavelength of light in XRD,
β-full width at half maxima, and θ is the Bragg reflection angle.

The size of the particle for the PEO-PMMA-CdBr2 and PEO-PMMA-CdBr2-5 wt. %
CeO2 BPNSPE sample was calculated using the Debye–Scherrer formula, utilizing Equation
(1) [16] for the most fierce peak at 19.14◦ by deconvolution fitting of peaks using Origin Pro
8 Software, as delineated in Figure 3. The particle sizes of the samples are approximately 60
nm and 32 nm for the PEO-PMMA-CdBr2 and PEO-PMMA-CdBr2-5 wt. % CeO2 blended
nanocomposite solid polymer electrolyte complex, which points out that a reduction in
particle size amplifies the amorphous nature, as exemplified in SEM studies.
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Figure 3. Deconvoluted XRD profiles acquired for PEO-PMMA-CdBr2 and PEO-PMMA-CdBr2-
5 wt. % CeO2 blended plasticized nanocomposite solid polymer electrolyte system.

3.2. Fourier-Transform Infrared Spectroscopic Results

The Fourier-transform infrared spectrum in favor of PEO-PMMA-CdBr2 along with
the PEO-PMMA-CdBr2-5 wt. % CeO2 blended nanocomposite solid polymer electrolytes
(BPNSPE) is shown in Figure 4. It is discerned that significant changes were ascertained
after the assimilation of the CeO2 nanofiller into the solid polymer electrolytes. The wave
number noticed at 841 cm−1 as well as 961 cm−1 correlated to C-H2 trembling [17] and
C-H2 rotating modes, appropriate for polyethylene oxide [18], and its position changed
to 843 cm−1 and 954 cm−1 subsequent to the merging of the CeO2 nanofiller into the
polymer matrix.
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blended plasticized nanocomposite solid polymer electrolytes.

Polyethylene oxide showed a semiconscious triad vibrational spectrum at 1145 cm−1,
1059 cm−1 along with 1097 cm−1 comparable to the C-O-C stretching mode of vibration [19],
which was relocated to 1142 cm−1, 1060 cm−1 and 1105 cm−1 in the matrix. Similarly, the
absorption peak situated at 1240 cm−1 and 1465 cm−1, ascribed to C-H2 symmetric stretch-
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ing [20] and the C-H2 scissoring mode of PEO [18], was dislodged to 1237 cm−1 and
1455 cm−1 in the ceramic filler complex. Furthermore, twin bands monitored at 1342 cm−1

and 1361 cm−1 embodied the C-H2 fluttering form [21,22] transferred to 1344 cm−1 and
1362 cm−1. In addition, the spectrum noticed at 1277 cm−1, attributed near the C-C-O
stretching mode of vibration of PMMA [23], was shifted to 1276 cm−1, whereas the peak at
1725 cm−1 analogous to C=O stretching of PMMA [23] disappeared in the composite. Fur-
thermore, four new spectra were viewed at 833 cm−1, 751 cm−1, 1078 cm−1 and 1116 cm−1

after the enclosure concerning the CeO2 nanofiller, while a lower wavenumber vibrational
peak was examined at 751 cm−1, similar to Ce-O stretching bond [24] in the complex.
The above sequels of spectral transformations may be due to the chemical reaction and
structural changes taking place between the EO group of PEO, -CH3 group of the PMMA
polymer with Cd2+ cations of CdBr2 and the CeO2 nanofiller, as evidenced by the present
XRD studies.

3.3. Absorption Study of Blended Plasticized Nanocomposite Solid Polymer Electrolytes
(BPNSPEs)

The optical response acquired for PEO-PMMA-CdBr2 and PEO-PMMA-CdBr2-5 wt. %
CeO2 blended plasticized nanocomposite solid polymer electrolytes (BPNSPEs) in the
absorption range 200–800 nm is shown in Figure 5. On the whole, the PEO-PMMA-CdBr2
sample showed an absorption peak at 495 nm, which increased to 498 nm after the inclusion
of the CeO2 nanofiller in the polymer matrix, while pure cerium oxide usually shows an
absorption peak around 298 nm [25]; however, here, the absorption peak was noticed at
498 nm in the PEO-PMMA-CdBr2 -5 wt. % CeO2 sample because the CeO2 filler interacted
with the polymer and salt, thus shifting the peak towards the longer wavelength region,
which is due to the lower energy level to higher energy level exhilaration of the electrons,
thereby increasing the mobility of charge carriers. The absorption peak observed in a higher
wavelength range may be due to the transition of electrons from the 2p state valence band
of the O2− molecule present in the polymer to the 4f state conduction band of Ce4+ of the
CeO2 nanofiller [26].
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blended plasticized nanocomposite solid polymer electrolytes.

3.4. Surface Morphology of Blended Plasticized Nanocomposite Solid Polymer Electrolytes
(BPNSPEs)

SEM micrographs of PEO-PMMA-CdBr2 along with PEO-PMMA-CdBr2-5 wt. % CeO2
blended plasticized nanocomposite solid polymer electrolytes (BPNSPEs) are shown in
Figure 6. The surface image of PEO-PMMA-CdBr2 reveals the presence of compactly ar-
ranged spherical grains of approximately the same size, which indicates that the blend is
highly crystalline in nature, whereas the CeO2-integrated nanocomposite polymer elec-
trolyte complex illustrates an astonishing improvement in terms of a structural alteration
from the crystalline phase to the unstructured phase. It is evident that, owing to the ac-



Eng. Proc. 2023, 56, 231 6 of 7

cumulation of the CeO2 nanofiller hooked onto the complex, the presence attributed to
spherical grains completely disappeared, which further changed to a deformed shape, thus
indicating a reduction in the crystal temperament of the blended thin film. Still, blended
polymer, salt as well as nanofiller signify the smoothened region, which symbolizes the
progress of ions to move at a faster rate [27]; thereby, the ionic conductivity of BPNSPE
plays a major role, as evidenced amongst the above results.
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Figure 6. SEM photomicrographs appertaining to PEO-PMMA-CdBr2 and PEO-PMMA-CdBr2-
5 wt. % CeO2 blended nanocomposite solid polymer electrolytes.

4. Conclusions

The electrochemical performance of blended plasticized nanocomposite solid polymer
electrolyte (BPNSPE) nano-emaciated films of PEO-PMMA-CdBr2 and PEO-PMMA-CdBr2-
5 wt. % CeO2 blended nanocomposite solid polymer electrolytes were tested through XRD,
FTIR, UV and SEM investigations, and the polymer matrix was found to progress with
a fall in crystal properties owing to the CeO2 inorganic nanofiller, analyzed in the same
way, through the abovementioned explorations. Thus, the present evaluation highlights
the effect of the CeO2 nanofiller on the PEO-PMMA-CdBr2 complex; thereby, the trans-
portability of conducting electrons accelerates, hence making it a favorable compound in
upcoming research.
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