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Abstract: In modern automotive engines, the importance of lubrication properties is increasing with
the demand for optimizing mechanical durability and fuel efficiency. The running-in of engines
removes microscopic irregularities from the surfaces of engine parts, thereby enhancing the lubrication
performance. Therefore, the running-in of engines has the effect of enhancing engine performance
and durability, thereby potentially extending their lifespan. On the other hand, running-in is a
complicated procedure, and a part of it needs to be performed by consumers themselves. One
solution to this problem is to machine the surfaces of the engine parts before running-in so that
they have the same surface condition as that after running-in. Realizing this solution requires an
appropriate evaluation and quantification of surface roughness by understanding of the changes in
the surface topography of engine parts before and after running-in. This study examines the surface
roughness of diesel engine cylinder liners and analyzes the differences in the surface topography
before and after running-in. Furthermore, this study develops new parameters to quantify the
difference in the surface textures of the cylinder liner before and after running-in. The developed
parameters are compared with Rsk and Rku, which are the parameters for evaluating the surface
wear of parts and are used in the ISO standards, to verify their usefulness in surface analysis.

Keywords: roughness parameter; surface texture; surface topography; automotive parts; diesel
engine; running-in

1. Introduction

In modern automotive engines, the importance of lubrication properties is increasing
with the demand for optimizing mechanical durability and fuel efficiency. The running-in
of engines improves lubrication by eliminating microscopic irregularities on the surfaces of
engine parts [1–3]. Therefore, running-in extends engine life because it enhances the engine
performance and durability. On the other hand, running-in is a complicated procedure,
and some procedures should be performed by consumers themselves. One solution to this
problem is to machine the surfaces of the engine parts before running-in such that they
have the same surface conditions as those after running-in. Realizing this solution requires
an appropriate evaluation and quantification of the surface roughness by understanding
the changes in the surface topography of the engine parts before and after running-in.
This study examines the surface roughness of diesel engine cylinder liners, as shown in
Figure 1, and then analyzes the differences in surface topography before and after running-
in. Furthermore, new parameters are developed to quantify the differences in the surface
topography of the cylinder liner before and after running-in. The developed parameters are
validated for their usefulness by comparing them with Rsk (Skewness) and Rku (Kurtosis),
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which are valid parameters for evaluating wear on the surface of a part, as specified in the
ISO standard.
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Figure 1. Engine cylinder liner. 

2. Changes in the Surface of the Cylinder Liner before and after Running-in 
This study examines the changes in the surface roughness of cylinder liners by com-

paring the surface roughness of the cylinder liners before and after running-in. Figure 2 
shows the surface roughness of the cylinder liner before and after running-in. Figure 2a–
c show the surface roughness of the upper, middle, and lower parts of the cylinder liner, 
respectively, before running-in. Figure 2d–f show the surface roughness of the upper, 
middle, and lower parts of the cylinder liner, respectively, after running-in. A comparison 
of these roughness values shows some changes before and after running-in. First, com-
paring Figure 2a–c, the roughness of the cylinder liner is uniform in any part before run-
ning-in. Next, comparing Figure 2a,d, wear progresses on the roughness of the upper part 
of the cylinder liner after running-in. Then, a comparison of Figure 2b,e shows that wear 
progresses on the roughness of the middle part of the cylinder liner after running-in, alt-
hough to a lesser extent than that on the upper part of the cylinder liner. Finally, compar-
ing Figure 2c,f, little wear progressed on the surface of the lower part of the cylinder liner 
after running-in. Therefore, the most significant wear progression by running-in is in the 
upper part of the cylinder liner, whereas the lower part shows significantly little wear 
progression. This suggests that the wear conditions of the cylinder liners can differ signif-
icantly based on their position. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Profiles comparison. (a) Upper part of cylinder liner before running-in. (b) Middle part of 
cylinder liner before running-in. (c) Lower part of cylinder liner before running-in. (d) Upper part 
of cylinder liner after running-in. (e) Middle part of cylinder liner after running-in. (f) Lower part 
of cylinder liner after running-in. 

Figure 1. Engine cylinder liner.

2. Changes in the Surface of the Cylinder Liner before and after Running-in

This study examines the changes in the surface roughness of cylinder liners by compar-
ing the surface roughness of the cylinder liners before and after running-in. Figure 2 shows
the surface roughness of the cylinder liner before and after running-in. Figure 2a–c show the
surface roughness of the upper, middle, and lower parts of the cylinder liner, respectively,
before running-in. Figure 2d–f show the surface roughness of the upper, middle, and lower
parts of the cylinder liner, respectively, after running-in. A comparison of these roughness
values shows some changes before and after running-in. First, comparing Figure 2a–c, the
roughness of the cylinder liner is uniform in any part before running-in. Next, comparing
Figure 2a,d, wear progresses on the roughness of the upper part of the cylinder liner after
running-in. Then, a comparison of Figure 2b,e shows that wear progresses on the roughness
of the middle part of the cylinder liner after running-in, although to a lesser extent than
that on the upper part of the cylinder liner. Finally, comparing Figure 2c,f, little wear
progressed on the surface of the lower part of the cylinder liner after running-in. Therefore,
the most significant wear progression by running-in is in the upper part of the cylinder
liner, whereas the lower part shows significantly little wear progression. This suggests that
the wear conditions of the cylinder liners can differ significantly based on their position.
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Figure 2. Profiles comparison. (a) Upper part of cylinder liner before running-in. (b) Middle part of
cylinder liner before running-in. (c) Lower part of cylinder liner before running-in. (d) Upper part of
cylinder liner after running-in. (e) Middle part of cylinder liner after running-in. (f) Lower part of
cylinder liner after running-in.
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3. Development of Parameters

The surface topography of the cylinder liner differs before and after the running-in.
The development of parameters to quantify these differences is important to improve the
effectiveness of cylinder liner surface evaluation. This study attempts to develop new
parameters that can quantitatively evaluate the changes in the cylinder-liner surface caused
by running-in. The surface roughness of the cylinder liner is significantly changed by
the effect of running-in. Quantifying this change may be valuable for understanding the
effect of running-in. The following sections describe the newly developed parameters
to quantitatively evaluate the differences in the cylinder liner surfaces before and after
running-in.

3.1. Parameter Using the Volume near the Peak

The volume near the peak is considered to potentially affect the anchoring effect and
intermolecular forces. Based on this, a new parameter, pPsm, is developed. The procedure
for calculating pPsm is as follows. (1) Detect the peak point of surface profile. (2) As shown
in Figure 3, after the detection of peak points, five points are detected: two points in front
of the detected peak and two points behind it. (3) As shown in Figure 3, the volume, Si, is
calculated between the five detected points using trapezoidal integration. (4) Finally, the
total volume calculated in step (3) is divided by the total number of peaks, nm, to obtain an
average. This is pPsm as in Equation (1).

pPsm =
1

nm

nm

∑
i=1

Si (1)
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3.2. Parameter Focusing on the Anchor Effect

The following describes a new parameter devised based on physical considerations
of the anchoring effect. A new parameter, pPmotif, is developed by applying the motif
method [4,5], considering that the anchor effect involves microroughness between the
peaks of an uneven structure. Figure 4 is a schematic diagram showing the detection of
global peaks (blue circles in Figure 4) and local peaks (red circles in Figure 4) necessary
for calculating pPmotif. The calculation procedure for pPmotif is as follows. (1) Detect
the peak points of the surface profile. (2) Detect the global peaks using the motif method
from the detected peak points, and then calculate the distance, ARi, between the global
peaks. (3) Extract the local peaks that exist between ARi from the peak points detected in
step (1), and then count the number of local peaks, ni. (4) Divide ni by ARi. (5) Calculate
the average from the values obtained in step (4), as shown in Equation (2).

pPmotif =
1
n

n

∑
i=1

ni
ARi

(2)
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3.3. Analysis by Rsk and Rku

Rsk and Rku are described as effective parameters for evaluating the wear on part
surfaces according to ISO standards [6]. Figure 5 is a schematic diagram of Rsk. The
parameter Rsk evaluates the symmetry of the peaks and valleys of the surface profile. Rsk
takes a value of zero in the case of a normal distribution and shows a negative value in
the case of a worn surface. Rsk is calculated as follows Equation (3) [6]. The parameter
Rku evaluates the sharpness of the peaks and valleys of the surface profile. Figure 6 is a
schematic diagram of Rku. Rku takes a value of thee in the case of a normal distribution.
Rku is calculated as shown in Equation (4) [6].

Rsk =
1

Rq3

[
1
lr

∫ lr

0
Z3(x)dx

]
(3)

Rku =
1

Rq4

[
1
lr

∫ lr

0
Z4(x)dx

]
(4)
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4. Evaluation of the Effectiveness of Developed Parameters

This study examines the effectiveness of the developed parameters by applying the
developed parameters, Rsk and Rku, to the surface profiles of a cylinder liner before and
after running-in. Figure 7 shows the calculation results of pPsm. The error bars in the figure
represent the standard deviation.
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As shown in Figure 7, the value of pPsm in the upper and middle parts of the cylinder
liner after running-in is lower compared to the lower parts. This result agrees with the
progression of the plateau formation in the upper and middle parts of the cylinder liner
after running-in, as shown in Figure 2. Therefore, the value of pPsm is considered to
characterize the progression of plateau formation. As shown in Figure 7, the value of pPsm
is higher in the lower part of the cylinder liner after running-in than in the other parts. This
result is considered to be influenced by the rougher surface profile of the lower part of
the cylinder liner after running-in compared to other parts. Comparing the profiles of the
lower part of the cylinder liner in Figure 2, the profile of the lower part of the cylinder liner
after running-in seems to be rougher than that before running-in. This is considered that
by running-in, the surface in the lower part of the cylinder liner is scratched.

Figure 8 shows the calculation results of pPmotif. As shown in Figure 8, pPmotif
exhibits a constant value in all parts of the cylinder liner before running-in. Additionally,
after running-in, the value of pPmotif is the highest at the top of the cylinder liner and
decreases in the middle and bottom, in that order. These results are similar to the changes
in the cylinder liner surface profile before and after running-in, as shown in Figure 2.
Therefore, pPmotif is considered a suitable parameter for quantifying the differences in
the surface of the cylinder liner before and after running-in. However, the pPmotif cannot
characterize differences in the surface profiles of all parts because the error bars overlap
between the upper and middle parts of the cylinder liner after running-in. Therefore, since
pPmotif has problems with accuracy, further improvements are required.

Next, the result of pPmotif is compared with those of Rsk and Rku. Figures 9 and 10
present the calculation results of Rsk and Rku, respectively. From Figures 9 and 10, Rsk
and Rku show results that are almost similar to those of pPmotif. However, both Rsk
and Rku have more overlap of error bars than pPmotif in all parts of the cylinder liner
after running-in. Therefore, the effectiveness of Rsk and Rku is considered lower than
that of pPmotif, although they are possible to quantify the differences in the cylinder liner
surface before and after running-in. In conclusion, pPmotif is considered highly effective
for quantifying the surface texture of the cylinder liner before and after running-in.
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5. Conclusions 
In this study, we developed new parameters for quantifying the differences in the 
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development of a method to omit the running-in. The newly developed parameters are a 
parameter using the volume near the peak, pPsm, and a parameter focusing on the anchor 
effect, pPmotif. We experimented with pPsm, pPmotif, Rsk, and Rku; as the result, pPmo-
tif showed the best results. However, pPmotif and pPsm have a problem in that they can-
not fully characterize the differences in surface profiles among all parts of the cylinder 
liner after running-in. Hence, we plan to develop new parameters to address this problem 
in our future study. 
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Figure 10. Results of Rku.

5. Conclusions

In this study, we developed new parameters for quantifying the differences in the
surfaces of cylinder liners before and after running-in with the aim of contributing to the
development of a method to omit the running-in. The newly developed parameters are a
parameter using the volume near the peak, pPsm, and a parameter focusing on the anchor



Eng. Proc. 2023, 56, 225 7 of 7

effect, pPmotif. We experimented with pPsm, pPmotif, Rsk, and Rku; as the result, pPmotif
showed the best results. However, pPmotif and pPsm have a problem in that they cannot
fully characterize the differences in surface profiles among all parts of the cylinder liner
after running-in. Hence, we plan to develop new parameters to address this problem in
our future study.
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