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Abstract: One of the major tasks of aerodynamics is the study of the flow around airfoils. While
most conventional methods deal well with steady flows, unsteady airfoils, like the ones on helicopter
blades, are subject to such complex dynamic flows that their study can impose substantial difficulties.
However, recent applications of machine learning, in the form of neural networks, have shown very
promising results when dealing with complex dynamic aerodynamic phenomena. For this reason,
this paper proposes the implementation of a recurrent neural network for the time-wise prediction
of the lift, momentum, and drag coefficients for an airfoil subject to plunging motion, using the Re,
k, h, kh and the time history of the effective angle of attack as inputs. Results from early training
already suggest the network’s capability to approximate the desired outputs, even if with some
limitations. However, the network configuration is flexible enough to be fed with either experimental
or numerical data in the future.

Keywords: unsteady aerodynamics; recurrent neural network; potential flow

1. Introduction

Being able to study the aerodynamic loads on an airfoil is a major task in the design
process of any aero-vehicle [1]. More specifically, there is a wide interest in flapping-wing
dynamics. From nature, there is the example of birds, fish, and even cetaceans, which all
rely on flapping-wing systems to generate lift and/or thrust [2]. Another example of a
flapping wing can be found on a helicopter blade undergoing forward flight [3]. More
recently, with a surge in interest in Micro Air Vehicles, the study of flapping wings has
gained even greater importance [2].

Given the importance of understanding and predicting the behavior of flapping wings,
many methods have been developed over the years. Traditionally, wind tunnel testing is
the main way to evaluate the aerodynamic forces on the airfoils. Eventually, Computational
Fluid Dynamics (CFD) became one of the most used methods for the study of flows around
airfoils. However, these simulations can easily become very computationally intensive. In
an attempt to reduce the computational burden of CFD simulations, several Reduced Order
Models (ROM) have been developed, but these lack good generalization capabilities and
struggle when dealing with dynamic, non-linear, aerodynamic phenomena [4,5].

Thus, it is clear that there is a need for the development of fast, accurate, aerodynamic
prediction tools. Recently, there has been an interest in the application of machine-learning-
based approaches in the field of aerodynamics, especially Neural Networks (NN).

These are of special interest for their flexibility and generalized model capability. Also,
once trained, they are able to produce accurate predictions very quickly [6]. Examples
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of such applications include the works of Zhang et al. [4], Peng et al. [7], Wu et al. [5],
Balla et al. [6], and Moin et al. [1].

In more detail, Zhang et al. [4] implemented a Recurrent Neural Network (RNN)
for the prediction of the non-linear, unsteady evolution of the aerodynamic coefficients
of an airfoil subjected to an oscillating motion. RNNs are a kind of neural network in
which the outputs from one time step are fed as inputs for the following time step via the
so-called feedback nodes. The recurrent structure allows these networks to capture the
time-dependent dynamics of a system. Due to this, RNNs have been shown to be able to
process complex, non-linear mechanics [8].

For this reason, the present paper proposes the implementation of an RNN for the
temporal prediction of the aerodynamic coefficients of an airfoil subject to plunging motions,
used as a starting point to explore the designed neural network. The proposed network
structure is comprised of a delay layer, followed by a series of fully connected hidden
layers, which connect to the output nodes. The delay layer is fed with a sample of both
the previous input and outputs, allowing the network to process the time history of the
system. Currently, for a proof of concept, the network is being trained with data provided
via an implementation of the Hess Smith Panel Method (HSPM), as it allows for a prompt
generation of the large dataset required for training. Once trained, the network is validated
by being presented with a different set of conditions outside of the training data. In the
future, the same network is intended to be trained with experimental data for the prediction
of unsteady aerodynamic phenomena, such as dynamic stall.

2. Methodology

In this paper, a recurrent neural network is proposed for the time-wise prediction of
aerodynamic coefficients of a plunging airfoil (with a null angle of attack). An RNN is a
type of neural network that features feedback nodes, which allow it to take the previous
output as an input via a delay layer. The proposed network will be used to predict the
coefficients of lift, Cl , drag, Cd, and momentum Cm of an airfoil subject to plunging motion.
These coefficients form the neural network’s output vector ynet(t) = [Cl(t) Cd(t) Cm(t)].
The input is given by the Reynolds number, Re, reduced frequency k, non-dimensional
amplitude h, non-dimensional velocity kh, and effective angle of attack αeff.

The time-dependent inputs enter via the delay layer present at the start of the neural
network. This layer features four delay nodes: one to store the time history of αeff, while the
others store the history of each one of the previous outputs, which is fed via the feedback
node. As one of the objectives of the delay layer is to reduce the space dimension of the
network, this layer will only store the latest q points of αeff and the latest p points of ynet,
which means the input from the delay layer, at time step t, Z−1

t , can be represented as

Z−1
t = [αeff(t), αeff(t − 1), ..., αeff(t − q), ynet(t), ynet(t − 1), ..., ynet(t − p)]. (1)

The combination of the external input with the delay forms the complete input of the
neural network, unet. Inside the network, a series of fully connected hidden layers will
process the input and feed its output as the input for the following layer, until the output
layer is reached. This process forms the feed-forward pass of the NN. Each layer is made
of several artificial neurons, whose inner workings consist of three basic mathematical
operations. Firstly, the weighted sum wi,jaj of all its inputs is taken, to which the bias bi is
added, resulting in the internal state of the neuron zi. Lastly, the neuron’s internal state is
passed through the activation function σ, resulting in the neuron’s activation ai = σ(zi).

It is now possible to describe the mapping between the inputs and the outputs of the
neural network, at each time step t, as a global black-box function f

ynet(t) = f (Re, k, h, kh, α(t), α(t − 1), ..., α(t − q), y(t − 1), y(t − 2), ..., y(t − p), W, b), (2)

where W and b represent all the weights and bias, respectively, of the NN.
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From this, it is clear that the goal of training is to find the values of weights, wi,jaj, and
biases, bi, that provide the best mapping between the inputs and the outputs. The training
algorithm follows the one presented by Nielsen [9] in his book. For this, the network is
subject to a sequential supervised learning task, in which both the inputs and respected
target outputs are known for each training example. In order to measure the network’s
performance at each time step t, the difference between the expected value d(t) and the
predicted value ynet(t), e(t) = d(t)− ynet(t) can be taken.

Then, we can define the total error of the network over a training period [0, τ] as the
sum of the square errors. This training period can be a single sample period (one epoch)
or multiple epochs. The total error of the network can be used as the objective function
for training

Jtotal =
τ

∑
t=1

J(t) =
1

2T

τ

∑
t=1

e(t)2, (3)

where Jtotal is the network’s objective function. The training process finds the set of values
of W and b that minimize this function.

This can achieved by calculating the gradient of the cost function with respect to the
parameter space. For this, a backward pass over the network is required, in which the error
is obtained for the outputs and feedback across the network. This process is designated
backpropagation. Since there are only target values for the outputs of the final layer, the
backpropagation algorithm starts by computing the error vector of the final layer

δL = ∇a Jtotal ⊙ σ′(zL), (4)

where δL is the error vector of the last layer of the network, ⊙ is the Hadamard product,
σ′ is the first derivative of the activation function, and zL is the internal state vector of the
last layer.

Once this is completed, the error vector can be propagated across each layer
l = L − 1, L − 2, . . . , 2 of the neural network, following the equation, in a process called
error injection

δl = ((W l+1)Tδl+1)⊙ σ′(zl), (5)

where δl is the error vector of the lth layer, (W l+1)T is the transpose of the weight matrix of
the next layer, and δl+1 is the error vector of the next layer. It is important to note that the
backpropagation stops at the second layer since the first layer of the network corresponds
to the input nodes.

Even though our NN is an RNN, the standard backpropagation algorithm can still be
applied by unfolding in time, forming a larger, continuous FNN to which the backpropa-
gation can be applied. Starting at the final time step t = τ, the backpropagation rewinds
through the layers as shown. Then, this process repeats for t = τ − 1, t = τ − 2, . . . , 1, and
the parameter change suggestion is accumulated.

Finally, once one or more training batches are completed, the weights and bias can be
updated according to the following rule

W l
new = W l

previous −
η

mN ∑
x

δx,l(ax,l−1)T (6)

bl
new = bl

previous −
η

mN ∑
x

δx,l , (7)

where m is the batch size such that the training period τ = mN.
The batches are randomly chosen subsets of the training set, and this method helps to

improve the learning process and to delay overfitting.
Even still, the network training requires a large set of labeled training data to be

generated. For this reason, an implementation of the Hess-Smith Panel Method (HSPM)
used by Teng [10] is being used to produce the training data. This code follows the same
assumptions of Basu and Hancock [11]. The labeled data is comprised of an oscillating pe-
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riod of 101 points, with its respective effective angle of attack and aerodynamic coefficients.
The airfoil chosen for the data generation was the NACA0012.

In order to validate the results of the neural network, the final dataset will be divided
into two subsets: one for the actual training, and one for validation. This validation set is to
hold distinct cases from those the network will be trained on. This is important as it allows
us to check that the network has learned the behavior of the system and not just how to
guess the training examples. The cost function from this validation stage is also used to
assess the progress and convergence of the learning process.

The current implementation of the RNN includes a total of three hidden layers, with
15, 10, and 5 neurons, respectively. The input layer has 20 input fields and the output layer
possesses three neurons, one for each of the outputs. The delay layer stores four points for
each of its inputs: αeff, Cl , Cd, and Cm for a total of 16 delay nodes.

The chosen activation function was the hyperbolic tangent since it is recommended to
be used with recurrent neural networks [9]. It is also relatively fast to compute, avoids the
neuron deactivation problem, and its derivative is defined in the domain.

As for a proof of concept, the implemented network was already trained using an
initial example training set. This is a small set of 30 training examples created using the
HSPM for the conditions shown in Figure 1. This condition was set for a Reynolds number
of 1 × 106. HSP was also used to generate a validation set of five examples, which was
used to assess the network’s performance. This validation set is for a h of 0.6 and k in the
range [0.01, 0.05].

0.00 2.00 4.00 6.00 8.00

·10−2

0.10

0.20

0.30

0.40

0.50

k

h

Figure 1. Conditions used for training.

3. Results and Discussion

As mentioned previously, to assess the performance of the network, a small initial
training set of 30 plunging training points was built. Together with an extra set of five cases
for validation. Some of the obtained results will be shown in this section. The network was
let to run for a total of 1000 epochs with a learning rate of 1.0. The evolution of the objective
function over the epochs can be seen in Figure 2.

200 400 600 800 1 000

0.2

0.4

0.6

0.8

1
·10−2

Epoch

Objective function

Figure 2. Evolution of the objective function with the training epochs considering a learning rate
of 1.0.
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From Figure 2, it is possible to see that the training started to converge after 300 epochs,
and the objective function reached a minimum after just 600 training epochs. After that,
the convergence rate slowed down, suggesting the learning process entered a trained state,
with little to no further improvement in prediction accuracy. It is important to remark that
no study has been conducted yet for the optimization of the learning rate, as the current
focus is to evaluate the network’s functionality. It can also be noted that, at the start, the
objective function exhibits a great amount of fluctuation. This can be due to the randomness
of the batch selection and the fact that the objective function’s value is recorded for each
individual case.

Let us now plot some training results from two distinct moments. The first, in Figure 3,
shows an example result from the 500th epoch of training, just halfway through training.
The second result, which is seen in Figure 4, corresponds to the same example regime, but
it is taken from the last epoch.
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Figure 3. Comparison between the predicted outputs (full) and the target values (dotted) at epoch
500 with h = 0.4 and k = 0.03.
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Figure 4. Comparison between the predicted outputs (full) and the target values (dotted) at epoch
1000 with h = 0.4 and k = 0.03.

Comparing both Figures 3 and 4, it is clear how the network prediction capability
improved. The momentum coefficient was the first to converge, being already close to the
target output at epoch 500. This was followed by the convergence of the lift coefficient.
However, despite the apparent minimization of the objective function, the drag coefficient
was not able to fully converge. From the training results, it has been observed that the
network struggles to predict the drag coefficient.

One possible explanation is that, due to the difference in magnitude between the
coefficients, the gradient of the function tends to favor the ones with greater difference and,
consequently, these will be the ones with larger influence. Due this, the network could be
trapped in a local minimum where the error associated Cl and the Cm is minimized. Any
further attempts from the network to optimize the Cd would produce an increased error of
the remaining coefficients, causing the gradient descent to become trapped.

Looking closer at the lift and pitching momentum coefficients, it is also observed that
the estimates start with a greater deviation from the target value, which steadily diminishes
as the prediction approaches the end of the period. This deviation is maximum at the first



Eng. Proc. 2023, 56, 219 6 of 7

three points of the network’s estimate, which suggests that it must be a consequence of the
delay initialization problem.

Finally, the trained network was run with the validation cases outside of the training
conditions. This was performed in order to evaluate if the neural network had properly
learned how to predict the system behavior and not just to fit the training examples. The
following plots in Figure 5 show the difference between the predicted values and the target
outputs for one of the validation cases.
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Figure 5. Comparison between the predicted outputs (full) and the target values (dotted) for a
validation case with h = 0.6 and k = 0.04.

When observing the results from the validation in Figure 5, the network exhibits, once
again, a difficulty when predicting the drag coefficient, which is expected since it did not
manage to learn it during training. However, even with some errors, it can be seen that the
network was able to estimate the behavior of the lift and drag coefficients, despite the fact
that it had never seen this condition during training.

It is also clear that the network struggles with the first three points of the period since
it does not have enough information about the previous outputs. From analyzing the lift
coefficient, it can be seen that the estimate does indeed improve after the first quarter of the
sampling period, with one exception. When closely inspecting the plots for both the Cl and
the Cm, one can notice the behavior at the ends of the ellipses, where the prediction slightly
deviates from the target value.

4. Conclusions

From the results, it is possible to conclude that the network is trying to learn how to
correctly predict the aerodynamic coefficients. However, this is only really the case for the
Cl and Cm. It could be possible that, since these are the coefficients of the largest magnitude,
their high error makes the network fall into a local minimum of the cost function. One
possible solution to mitigate this problem would be to train a separate network for each of
the coefficients or normalize all outputs. This would still allow for the use of the learned
weight and bias matrices to quickly model the outputs.

There is still a lot of room for improvements in the network itself. One aspect to
tackle is the initialization of the delays. Regarding the precision of the predictions, the
current algorithm can be enhanced with methods such as momentum and weight decay.
These results are also limited by the very reduced size of the current training sample. It
is hoped that the results will be improved once the larger dataset is used. The learning
rate and mini-batch size will also have to be studied properly in order to optimize the
learning process.
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