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Abstract: Inverted distributions, also known as inverse distributions, are essential statistical models
for analyzing real-life data in biomedical sciences, engineering, and other fields. In this paper, we use
the odd beta prime-G family and the inverted Kumaraswamy distribution to introduce a new inverted
distribution called the odd beta prime inverted Kumaraswamy. The new distribution exhibits right-
skewed, J-shaped densities and features increasing-constant, concave-convex, and bathtub hazard
functions. Some of its statistical properties are explored. The parameters are estimated via the
maximum likelihood method. The empirical importance of the new model is proved through its
application to COVID-19 mortality data from Italy. Numerical results demonstrate that the proposed
model outperforms its competitors. We hope that this proposed distribution can be considered as a
viable alternative to some well-established distributions for modeling real-life data across various
application areas.

Keywords: odd beta prime-G family; Kumaraswamy distribution; inverted Kumaraswamy distribution;
quantile function; infectious disease; COVID-19; mortality rate

1. Introduction

As data sets become increasingly complex and diverse, researchers attempt to develop
more statistical models that provide reliable and accurate prediction of the underlying
processes [1]. Inverted distributions, also known as inverse distributions, are versatile
statistical models that have a wide range of applications in a variety of practical disci-
plines, including the survival analysis, reliability theory, environmental studies, finance
literature, econometrics, life testing problems, medical research, survey sampling, engineer-
ing sciences, and biological sciences. Their flexibility makes them valuable in modeling
and analyzing various real-life phenomena and making informed decisions in research
and practical applications. The inverted distributions are sometimes very useful to ex-
plore additional properties of phenomena that cannot be explored using non-inverted
distributions [2].

Several researchers have focused on studying inverted distributions and exploring
their applications in various fields. For instance, reference [3] introduced the inverse
Weibull distribution, reference [4] initiated the inverted gamma distribution, reference [5]
proposed the inverse Rayleigh distribution, reference [6] studied the inverted Burr XII

Eng. Proc. 2023, 56, 218. https://doi.org/10.3390/ASEC2023-16310 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/ASEC2023-16310
https://doi.org/10.3390/ASEC2023-16310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0001-8669-0572
https://orcid.org/0000-0001-5772-6126
https://orcid.org/0000-0002-9104-1937
https://asec2023.sciforum.net/
https://doi.org/10.3390/ASEC2023-16310
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/ASEC2023-16310?type=check_update&version=1


Eng. Proc. 2023, 56, 218 2 of 9

distribution, reference [7] pioneered the inverted Pareto I distribution, reference [8] de-
fined the inverted Pareto II distribution, reference [9] established the inverted exponential
distribution, reference [10] offered the inverse Nakagami-m distribution, reference [11]
constructed the inverse Lindley distribution, reference [12] presented the inverted Ku-
maraswamy distribution, reference [13] investigated the inverse power Lomax distribution,
reference [14] developed the inverted Nadarajah–Haghighi distribution, reference [15]
created the inverted Topp-Leone distribution, and reference [16] suggested the inverted
Gompertz–Fréchet distribution.

In 1980, Kumaraswamy presented a distribution that is similar to the beta distribu-
tion but has certain significant advantages, including an inverted closed-form cumulative
distribution function, and it provides simple quantile and distribution functions without
the need for complex mathematical operations. This distribution can be used to model
and analyze a wide range of natural phenomena with lower and upper bounds, including
parameters such as the height of individuals, scores obtained on a test, atmospheric tem-
peratures and hydrological data such as daily rain fall and daily stream flow [17]. For more
details, we refer the interested readers to the following references: [18–22].

The inverted Kumaraswamy distribution was constructed via the Kumaraswamy (K)
distribution using transformation (T) = 1

Y − 1, when Y has a K distribution with probability
density given as follows:

f (y; a, b) = abya−1[1− ya]b−1; 0 < y < 1, a, b > 0. (1)

Thus, the distribution of T is called the inverse or inverted Kumaraswamy (IK) distri-
bution and its domain is (0, ∞). Here, we adopted the IK distribution introduced by [12] as
a baseline distribution, which has the following cumulative distribution function (CDF)
and probability density function (PDF), respectively:

F(t; a, b) =
[
1− (1 + t)−a

]b
; t > 0, a, b > 0, (2)

f (t; a, b) = ab(1 + t)−a−1
[
1− (1 + t)−a

]b−1
; t > 0, a, b > 0, (3)

where a and b are shape parameters.
In the past few years, there has been significant interest in extending conventional

distribution models to better capture real-life data by employing a generalized class of
distributions. These include the extended Gumbel–Weibull distribution from [23], the
generalized odd beta prime family of distributions from [24], the new extended Topp–
Leone exponential distribution from [25], the log-Topp–Leone distribution from [26], the
Marshall–Olkin extended Gumbel type-II distribution from [27], the McDonald generalized
power Weibull distribution from [28], the exponentiated odd Lomax exponential distri-
bution from [29], the Maxwell–Weibull distribution from [30], the Maxwell-exponential
distribution from [31], the odd-F-Weibull distribution from [32], and many others. Recently,
reference [33] developed a new family of distribution referred to as the odd beta prime-G
(OBP-G) family. The CDF and PDF of the OBP-G family are, respectively, given by:

F(t; c, d, δ) =

B Q(t,δ)
1−Q(t,δ)

(c, d)

B(c, d)
; t > 0, c, d > 0, (4)

and

f (t; c, d, δ) =
q(t, δ)

B(c, d){1−Q(t, δ)}2

{
Q(t,δ)

1−Q(t,δ)

}c−1

{
1 +

(
Q(t,δ)

1−Q(t,δ)

)}c+d ; t > 0, c, d > 0, (5)
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where c and d are the shape parameters, Q(t, δ) and q(t, δ) are the CDF and PDF of the
baseline distribution with parameter δ, respectively. The OBP-G class has been employed
to extend several baseline distributions, resulting in new compound distributions with
different properties and applications. For instance, reference [34] proposed the OBP-logistic
distribution, while reference [35], proposed the OBP-Fréchet and applied it to groundwater
data; reference [36] created the OBP-Burr X and applied it to model petroleum rock samples,
and more.

This study aims to suggest a new extension of the IK distribution by utilizing the
OBP-G class, which is named as the odd beta prime-inverted Kumaraswamy (OBPIK)
distribution. The proposed OBPIK distribution exhibits greater flexibility in modeling data
sets with a long right tail compared with other commonly used distributions. As a result,
the OBPIK can be efficiently used for long-term reliability estimates, producing accurate
predictions of extreme values occurring in the right tail of the distribution compared with
other distributions.

COVID-19 is a new viral disease caused by the severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) that generated a global epidemic. Several mathematical and
statistical models have been proposed to explain the path of the pandemic [37,38]. It is
important to point out that the characteristics of the pandemic data can fluctuate, making it
unable to fit classical probability distributions in all cases. As a result, we developed the
OBPIK distribution to model the mortality rate of this infectious disease in Italy.

The motivation and justification for introducing the OBPIK distribution are as follows:

(i) to improve the general performance of the classical IK distribution, which can handle
right-skewed and heavy-tailed data sets when compared to other competitive models;

(ii) to develop a model with different shapes, such as right-skewed and reversed-J shape;
(iii) to introduce a new model with various hazard functions that can capture increasing,

bathtub, and concave-convex shapes; and
(iv) to consistently offer superior fit in comparison to well-established, generated distribu-

tions for the same baseline distribution.

For these reasons, we proposed the OBPIK distribution, made up of the combina-
tion of the odd beta prime family of distributions proposed in [33] and the inverted
Kumaraswamy distribution.

This paper is outlined as follows: Section 2 contains the development of the OBPIK
distribution. Section 3 provides some of its basic statistical properties. Section 4 highlights
the method of parameter estimation. Section 5 provides the numerical application of the
new model. Section 6 offers concluding remarks.

2. The Odd Beta Prime Inverted Kumaraswamy Distribution

The odd beta prime inverted Kumaraswamy (OBPIK) model is generated by introduc-
ing two additional shape parameters from the OBP-G family. The CDF of the OBPIK model
is obtained by inserting (2) into (4) as provided via

F(t; a, b, c, d) =

B
[1−(1+t)−a ]b

(1−[1−(1+t)−a ]b)

(c, d)

B(c, d)
; t > 0, (6)

where a, b, c, d > 0 are shape parameters. The corresponding PDF is derived by inserting
(3) into (5) as provided via

f (t; a, b, c, d) =
ab(1 + t)−a−1

[
1− (1 + t)−a

]bc−1

B(c, d)
{

1−
[
1− (1 + t)−a

]b
}1−d ; t > 0. (7)

For simplicity, the parameters on CDF and PDF are omitted by writing F(t; a, b, c, d) = F(t)
and f (t; a, b, c, d) = f (t), respectively. The PDF plots of the OBPIK model with various
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parameter combinations are displayed in Figure 1. The PDF of the OPBIK can exhibit either
(a) right-skewed or (b) reversed-J shapes.

Eng. Proc. 2023, 56, x 4 of 10 
 

 

( )

( )

( )

( )

( )

1 1

1 1 1

,

; , , , ; 0,
,

−

−

 − +  
  − − +    = >

ba

ba

t

t

B c d

F t a b c d t
B c d

 
(6)

where , , , 0>abc d  are shape parameters. The corresponding PDF is derived by insert-
ing (3) into (5) as provided via 

( )
( ) ( )

( ) ( ){ }
11

1

1 1 1
; , , , ; 0.

, 1 1 1

−− − −

−
−

 + − + = >
 − − + 

bca a

dba

ab t t
f t a b c d t

B c d t
 (7)

For simplicity, the parameters on CDF and PDF are omitted by writing 

( ) ( ); , , , =F t a b c d F t  and ( ) ( ); , , , =f t a b c d f t , respectively. The PDF plots of the 
OBPIK model with various parameter combinations are displayed in Figure 1. The PDF 
of the OPBIK can exhibit either (a) right-skewed or (b) reversed-J shapes. 

 
Figure 1. The PDFs plots of the OBPIK model with various parameter values. The subfigure (a,b) 
show that the pdf of the OPBIK distribution can be right-skewed or reversed-J shaped density 
function. 

The survival function of the OBPIK model is obtained from (6) as provided via 

( )

( )

( )

( )

( )

1 1

1 1 1

,

1 ; 0.
,

−

−

 − +  
  − − +    = − >

ba

ba

t

t

B c d

S t t
B c d

 
(8)

The hazard function (HF) of the OBPIK model is derived from (6) and (7) as 

Figure 1. The PDFs plots of the OBPIK model with various parameter values. The subfigure
(a,b) show that the pdf of the OPBIK distribution can be right-skewed or reversed-J shaped
density function.

The survival function of the OBPIK model is obtained from (6) as provided via

S(t) = 1−

B
[1−(1+t)−a ]b

(1−[1−(1+t)−a ]b)

(c, d)

B(c, d)
; t > 0. (8)

The hazard function (HF) of the OBPIK model is derived from (6) and (7) as

h(t) =

ab(1+t)−a−1[1−(1+t)−a]
bc−1

B(c,d)
{

1−[1−(1+t)−a]
b}1−d

1−

B
[1−(1+t)−a ]b

(1−[1−(1+t)−a ]b)

(c,d)

B(c,d)

; t > 0. (9)

The HF plots of the OBPIK model with various parameter combinations are shown in
Figure 2. These plots indicate that the HF of the OPBIK model can exhibit either
(a) increasing gradually to the peak then constant or (b) concave-convex and bathtub shapes.
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3. Properties of the Odd Beta Prime Inverted Kumaraswamy Distribution

Some of the basic properties of the OBPIK model derived in this section include the
moments, the moment generating function, and the quantile function.

3.1. Moments

By the definition of moments, the moments of the OBPIK distribution can be given via

E(tr) =

∞∫
−∞

tr f (t)dt, (10)

where f (t) is the PDF of the OBPIK defined in (7). By inserting (7) into (10), we obtain

E(tr) =
ab

B(c, d)

∞∫
0

tr
(1 + t)−a−1

[
1− (1 + t)−a

]bc−1

{
1−

[
1− (1 + t)−a

]b
}1−d dt. (11)

After algebra, we obtain the moments of the OBPIK distribution given by

E(tr) =
ab

B(c, d)

∞

∑
i,j=0

ψi,jB(a(1 + j)− r, r + 1), (12)

where ψi,j =
(−1)jΓ(1−d+i)

i!Γ(1−d)

(
b(c + i)− 1

j

)
.

3.2. Moment Generating Function

The moment generating function (MGF) of the OBPIK model is provided via

MT(x) = E
(
etx) = ∞∫

−∞

etx f (x)dx =

∞∫
−∞

∞

∑
k=0

(tx)k

k!
f (x)dx =

∞

∑
k=0

xk

k!
E
(

tk
)

. (13)

By setting r = k in (12) and insert it in (13), we obtain the MGF of the OBPIK given by

MT(x) =
ab

B(c, d)

∞

∑
i,j,k=0

ψi,j
xk

k!
B(a(1 + j)− k, k + 1). (14)

3.3. Quantile Function

The quantile function (QF) of the OBPIK distribution is formulated by inverting (6)
as follows:

T =
{

1− K
1
b

}− 1
a − 1, (15)

where K = I−1(u;c,d)
1+I−1(u;c,d) and I−1(u; c, d) is the inverted CDF of (6).

4. Estimation of Parameters

This section presents the estimation of parameters of the OBPIK distribution using the
maximum likelihood method. We let T1, T2, . . . , Tn be a random variable of sample size n
from the OBPIK model with parameters a, b, c, and d, then its likelihood function is derived
from (7) as provided via

L =

{
ab

B(c, d)

}n n

∏
i=1

(1 + ti)
−a−1

[
1− (1 + ti)

−a
]bc−1

{
1−

[
1− (1 + ti)

−a
]b
}1−d . (16)
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The log-likelihood function of (16) presented by l is provided via

l= n log
{

ab
B(c,d)

}
+ (−a− 1)

n
∑

i=1
log(1 + ti) + (bc− 1)

n
∑

i=1
log
[
1− (1 + ti)

−a
]

−(1− d)
n
∑

i=1
log
{

1−
[
1− (1 + ti)

−a
]b
}

.
(17)

Obviously, software like R or MATLAB can be used to obtain these solutions.

5. Numerical Illustration to COVID-19 Mortality Rate

Here, the application of the OBPIK distribution is validated by using COVID-19 data.
These data represent the COVID-19 mortality rates of Italy recorded for a period of 111 days
from 1 April to 20 July 2020. The data can be found in [39]. These data sets are presented as
follows: 0.2070, 0.1520, 0.1628, 0.1666, 0.1417, 0.1221, 0.1767, 0.1987, 0.1408, 0.1456, 0.1443,
0.1319, 0.1053, 0.1789, 0.2032, 0.2167, 0.1387, 0.1646, 0.1375, 0.1421, 0.2012, 0.1957, 0.1297,
0.1754, 0.1390, 0.1761, 0.1119, 0.1915, 0.1827, 0.1548, 0.1522, 0.1369, 0.2495, 0.1253, 0.1597,
0.2195, 0.2555, 0.1956, 0.1831, 0.1791, 0.2057, 0.2406, 0.1227, 0.2196, 0.2641, 0.3067, 0.1749,
0.2148, 0.2195, 0.1993, 0.2421, 0.2430, 0.1994, 0.1779, 0.0942, 0.3067, 0.1965, 0.2003, 0.1180,
0.1686, 0.2668, 0.2113, 0.3371, 0.1730, 0.2212, 0.4972, 0.1641, 0.2667, 0.2690, 0.2321, 0.2792,
0.3515, 0.1398, 0.3436, 0.2254, 0.1302, 0.0864, 0.1619, 0.1311, 0.1994, 0.3176, 0.1856, 0.1071,
0.1041, 0.1593, 0.0537, 0.1149, 0.1176, 0.0457, 0.1264, 0.0476, 0.1620, 0.1154, 0.1493, 0.0673,
0.0894, 0.0365, 0.0385, 0.2190, 0.0777, 0.0561, 0.0435, 0.0372, 0.0385, 0.0769, 0.1491, 0.0802,
0.0870, 0.0476, 0.0562, 0.0138.

Table 1 shows the descriptive statistics of these data. It is obvious that the data have a
right tail and platykurtic. The histogram in Figure 3 confirms that the data have a right
tail, and the extreme values are spotted in the box plot. This validates that the shape of
the density function of the proposed OBPIK model provided in Figure 1 is appropriate for
modeling this type of data.

Table 1. Descriptive statistics for COVID-19 mortality rate in Italy.

Statistic Min Q1 Q3 Median Mean Max Std. dev Skewness Kurtosis

Value 0.0138 0.1201 0.2064 0.1628 0.1668 0.4972 0.0788 0.7624 1.8129
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To verify the performance of the OBPIK model, we compare its fit with that of its
related models, such as the inverted Kumaraswamy (IK), the Topp–Leone generalized in-
verted Kumaraswamy (TLGIK), and the Marshall–Olkin extended inverted Kumaraswamy
(MOEIK). We use the values of the negative log-likelihood function

(
−l̂
)
, Akaike infor-

mation criterion (AIC), corrected AIC (CAIC), Bayesian information criterion (BIC), and
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Hannan–Quinn information criterion (HQIC) to select the best fitted model for these data.
The best fitting model is the one that has the maximum value of−l̂and provides the lowest
values of the aforementioned fitted criteria. The maximum likelihood estimates (MLEs)
and the fitted measures for the parameters of all competing models are given in Table 2.

Table 2. MLEs of each distribution for COVID-19 mortality rate in Italy.

Model
Estimates Fitted Measures

^
a

^
b

^
c

^
d −

^
l AIC CAIC BIC HQIC

OBPIK 1.8061 0.9866 1.4746 1.9989 20.7935 −33.5870 −32.8027 −25.4856 −30.4461
IK 1.9465 1.1201 --- --- 1.9899 0.0200 0.2464 4.0707 1.5904

TLGIK 1.5382 0.8963 1.1591 1.1737 20.6626 −33.3252 −32.5409 −25.2238 −30.1843
MOEIK 1.2582 1.4474 0.2106 --- 16.2904 −26.5809 −26.1193 −20.5048 −24.2252

Table 2 shows that the OBPIK model exhibits the lowest fitted measures compared
to all other fitted models. Therefore, it can be selected as the best model for analyzing
COVID-19 mortality rate in Italy. Figure 4a displays the plots of the fitted densities for
COVID-19 data. Figure 4b shows the plots of empirical and fitted CDFs for the same
COVID-19 data. These figures confirmed the results presented in Table 2.

Eng. Proc. 2023, 56, x 8 of 10 
 

 

COVID-19 data. Figure 4b shows the plots of empirical and fitted CDFs for the same 
COVID-19 data. These figures confirmed the results presented in Table 2. 

Table 2. MLEs of each distribution for COVID-19 mortality rate in Italy. 

Model 
Estimates Fitted Measures 
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6. Concluding Remarks

In this paper, we propose a new member of the inverted distribution called the odd
beta prime inverted Kumaraswamy distribution. Some basic statistical properties of the
new model, including the moment, moment generating function, and quantile function, are
viewed. The maximum likelihood estimators of the model are derived. To demonstrate the
importance and applicability of the new model, we apply it to the COVID-19 mortality rate
in Italy. Numerical results show that the proposed model outperforms other comparable
models. We hope that the new distribution can be considered a good alternative to some
well-established distributions for real-life data modeling in various areas of application.
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