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Abstract: Nanostructures of transition metal oxides have shown to be effective sensing layers of
electrodes used in electroanalytical chemistry. Manganese dioxide nanorods (MnO2 NRs) are of
interest and have been applied in colorant electroanalysis. An electrode modified with MnO2

NRs prepared in hexadecylpyridinium bromide (HDPB) medium is developed for rosmarinic acid
quantification. The application of HDPB as a dispersive agent provides stabilization of nanomaterial
suspension in a water medium. The developed electrode gives an improved response to rosmarinic
acid, i.e., 60 mV redox peak potential separation and 1.7-fold increased redox currents have been
observed. Quasi-reversible electrooxidation controlled by surface processes has been confirmed. The
analytical response of rosmarinic acid has been obtained by differential pulse voltammetry (DPV) in
Britton–Robinson buffer (BRB) pH 5.0. The method makes possible rosmarinic acid determination
from 2.5 × 10−8 to 1.0 × 10−6 M and from 1.0 × 10−6 to 1.0 × 10−5 M and provides a detection limit
equal to 9.7 × 10−9 M. These characteristics are improved vs. reported electrochemical approaches.
The selectivity of the electrode response to rosmarinic acid is shown using a 1000-fold excess of
inorganic ions, 100-fold excesses of saccharides, and 10-fold excesses of ascorbic and p-coumaric
acids, eugenol, carvacrol, and thymol. Other phenolic acids (gallic, ferulic, caffeic) and flavonoids
(quercetin, rutin) give an interference effect. Rosemary spices have been studied to prove the practical
applicability of the MnO2 NRs-based electrode.

Keywords: modified electrodes; voltammetry; metal oxide nanomaterials; natural phenolics; ros-
marinic acid

1. Introduction

Rosmarinic acid (Figure 1) is a natural phenolic compound produced mainly by plants
of the Lamiaceae family (genus Salvia, Lavandula, Ocimum, Melissa, Origanum, and Thymus)
as well as by other higher plants, including ferns [1].
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Being a bioactive compound, rosmarinic acid causes a positive health effect of medic-
inal and culinary herbs [1,2]. Thus, the determination of rosmarinic acid is of practical
interest.

This phenolic acid contains two catechol rings, which make it electroactive. This allows
the use of voltammetry and amperometry for analytical purposes. Various types of nanoma-
terials are used as electrode surface modifiers to provide sufficient sensitivity and selectivity
for rosmarinic acid determination. Nevertheless, only several modified electrodes have
been developed to date. Carbon paste electrode modified with carbon nanotubes dispersed
in chitosan and immobilized DNA gives liner response to 4.0 × 10−8–1.5 × 10−6 M of ros-
marinic acid with the detection limit equaled to 1.4 × 10−8 M [3]. The carbon nanotube
paste electrode with n-octyl-pyridinium hexafluorophosphate allows determination of
0.0–6.8 × 10−4 M and a detection limit of 1.5 × 10−8 M [4]. Carbon paste electrode with in-
corporated heterodinuclear complex [FeIIIZnII(µ-OH)(2-[bis(2-pyridylmethyl)aminomethyl]-
6-[(2-hydroxy-5-methylbenzyl)(2-pyridyl-methyl)aminomethyl]-4-methylphenol)](ClO4)2
shows long-term stability of rosmarinic acid determination in square-wave mode. The ana-
lytical dynamic range of 2.98 × 10−5–3.83 × 10−4 M and the detection limit of 2.3 × 10−6 M
have been achieved [5]. More complex glassy carbon electrode (GCE) modification based
on the layer-by-layer combination of poly(o-phenylenediamine) and platinum nanoparti-
cles does not show significant improvement in rosmarinic acid analytical characteristics
((1–55) × 10−6 M dynamic range and detection limit 5 × 10−7 M) [6]. The most sensitive
response to rosmarinic acid within 1 × 10−7−1 × 10−4 M and 1 × 10−4−5 × 10−4 M gives
carbon paste electrode based on the nanostructures of magnetic functionalized molecularly
imprinted polymer in particular, Fe3O4@SiO2@NH2 nanoparticles. A low detection limit of
8.5 × 10−8 M was achieved [7].

The application of metal oxide nanomaterials in combination with surfactants as
electrode surface modifiers could be a favorable approach in rosmarinic electroanalysis.
Among them, manganese dioxide nanorods (MnO2 NRs) are a prospective one for appli-
cation in electroanalysis due to the improved electron transfer rate, high effective surface
area, low toxicity, and low price [8]. The application of hexadecylpyridinium bromide
(HDPB) surfactant media as a dispersive agent for MnO2 NRs gives stable suspension of
nanomaterials. On the other hand, surfactant HDPB is co-immobilized at the surface of the
electrode, as has been recently shown in the example of synthetic colorants [9].

The aim of this study is to develop a highly sensitive rosmarinic acid voltammetric
assay using electrodes based on the MnO2 NRs and HDPB.

2. Materials and Methods

Stock 10 mM ethanolic solution of rosmarinic acid (96% purity reagent from Sigma-
Aldrich (Steinheim, Germany)) was used. An exact appropriate dilution was applied if
necessary. Other chemicals were of c.p. grade.

MnO2 NRs (99%, ø × L = 5–30 nm × 80–100 nm) from Sigma-Aldrich (Steinheim,
Germany) were used. Their 1 mg mL−1 homogeneous suspension was obtained in
1.0 × 10−3 M HDPB water solution (obtained from 98% HDPB from Aldrich (Steinheim,
Germany)) by 40 min sonication in the ultrasonic bath (WiseClean WUC-A03H (DAIHAN
Scientific Co., Ltd., Wonju-si, Republic of Korea)).

Four µL of MnO2 NRs suspension were drop-casted for electrode modification and
evaporated to dryness of the solvent under ambient conditions. Electrode surface renewal
was performed after each measurement by cleaning the alumina slurry (0.05 µm particle
size).

Voltammetric measurements were performed at the potentiostat/galvanostat Autolab
PGSTAT 12 (Eco Chemie B.V., Utrecht, The Netherlands) and the NOVA 1.10.1.9 software
(Eco Chemie B.V., Utrecht, The Netherlands). A three-electrode system consisting of GCE
(ø = 3 mm, CH Instruments, Inc., Bee Cave, TX, USA), or a MnO2 NRs–HDPB/GCE as
working electrode, Ag/AgCl reference electrode, and a platinum wire as an auxiliary
electrode was used.
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The “Expert-001” pH meter (Econix-Expert Ltd., Moscow, Russia) with a glassy elec-
trode was applied for the pH evaluation.

Commercially available rosemary spices were studied. Rosmarinic acid extraction was
performed by single ultrasound-assisted extraction with ethanol (rectificate). Extraction
was optimized using oxidation currents of the extract obtained. The best extraction yield
was obtained at 1:30 plant material/extragent ratio for 10 min of extraction time.

Statistical treatment was performed for five replications at p = 0.95. The results were
shown as an average value ± coverage interval.

3. Results and Discussion
3.1. Voltammetric Characteristics of Rosmarinic Acid

The oxidation characteristics of rosmarinic acid in Britton–Robinson buffer (BRB) pH
2.0 were studied using cyclic voltammetry. Reversible redox pare was observed at bare
GCE (Figure 2a).
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Figure 2. Cyclic voltammograms of 5.0 × 10−6 M rosmarinic acid in BRB pH 2.0 at the (a) bare GCE;
(b) MnO2 NRs–HDPB/GCE. Potential scan rate is 0.10 V s−1.

In the case of MnO2 NRs–HDPB/GCE, the redox peak potential separation was kept
the same, although a 10 mV anodic shift of both peaks was observed (Figure 2b) that is
negligible taking into account the accuracy of the potential measurement. The redox peak
currents are 1.6–1.7-fold increased compared to those at bare GCE (Table 1), which confirms
improved response to rosmarinic acid of the modified electrode.

Table 1. Voltammetric characteristics of rosmarinic acid in BRB pH 2.0 at various electrodes (n = 5;
p = 0.95).

Electrode Ea (mV) Ia (µA) Ec (mV) Ic (µA) Ic/Ia

Bare GCE 522 0.11 ± 0.01 462 0.10 ± 0.005 0.91
MnO2 NRs–HDPB/GCE 532 0.180 ± 0.005 472 0.170 ± 0.004 0.94

Varying BRB pH, the shift of rosmarinic acid redox peaks potentials to less positive
values was observed. This fact proves protons’ involvement in the redox process occurred.
Oxidation currents gradually increased in a strong acidic medium. The maximal currents
were obtained in BRB pH 5.0. Further pH increase showed a decrease of the redox currents,
which was more pronounced at pH 7.0 and higher pH values due to the rosmarinic
acid oxidation by air oxygen. This behavior usually takes place for natural phenolic
compounds [10]. BRB pH 5.0 was used in subsequent investigations.

The investigation of the potential scan rate effect on the redox behavior of rosmarinic
acid showed that electrooxidation proceeded quasi-reversible as a redox peak potential
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separation and currents ratio indicated. The redox peak currents were proportional to
the potential scan rate (Figure 3a), and the slopes (0.97 and 0.81 for the anodic and ca-
thodic peaks, respectively) for the plots lnI vs. lnυ (Figure 3b) confirm surface-controlled
electrooxidation of rosmarinic acid.
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3.2. Determination of Rosmarinic Acid Using MnO2 NRs–HDPB/GCE

The analytical response of rosmarinic acid was obtained by differential pulse voltam-
metry (DPV) in BRB pH 5.0. The effect of pulse parameters on the oxidation currents was
evaluated, and the maximum currents were obtained using a pulse amplitude of 0.075 V
and a pulse time of 0.025 s.

Rosmarinic acid oxidation peak was observed at 290 mV, which height linearly in-
creased with concentration growth from 2.5 × 10−8 to 1.0 × 10−6 M and from 1.0 × 10−6 to
1.0 × 10−5 M (Figure 4) with a detection limit of 9.7 nM that were significantly improved
compared to other electrochemical methods using modified electrodes [3–7] (Table S1). The
method developed showed high accuracy, as confirmed by the recovery of 99–100% in the
model solutions of rosmarinic acid.
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Figure 4. (a) Baseline-corrected DPVs of rosmarinic acid at the MnO2 NRs–HDPB/GCE in BRB pH
5.0. Pulse amplitude is 0.075 V, pulse time is 0.025 s, potential scan rate is 0.010 V s−1; (b) calibration
plots of rosmarinic acid.

The selectivity test was performed using standard components contained in plant
materials. Inorganic ions (K+, Mg2+, Ca2+, NO3

−, Cl−, and SO4
2−) up to 1.0 × 10−3 M
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and saccharides (fructose, rhamnose, glucose, sucrose) up to 1.0 × 10−4 M did not affect
response of 1.0 × 10−6 M rosmarinic acid. Ascorbic, tannic, and phenolic acids, flavonoids,
eugenol, and isopropylmethylphenols are oxidized at the MnO2 NRs–HDPB/GCE. Peak
potential separation for rosmarinic and ascorbic acids equaled 120 mV, and there was
no oxidation peak overlap up to 1.0 × 10−5 M of ascorbic acid in the mixture. Eugenol,
p-coumaric acid, carvacrol, and thymol oxidized at more positive potentials (520, 670, 680,
and 680 mV, respectively), and their 10-fold excess did not interfere with rosmarinic acid
determination. Other phenolic acids (gallic, ferulic, and caffeic), flavonoids (quercetin and
rutin), and tannic acid gave an interference effect.

Summarizing the selectivity study, the total response of easily oxidizable phenolics
will be registered on the MnO2 NRs–HDPB/GCE for plant samples containing usually
several classes of natural phenolic compounds.

Rosemary Spices Analysis

The rosemary ethanolic extracts exhibited oxidation peaks at 300 and 550 mV (Figure 5),
which are fully resolved. The stretched shape of the first peak descending part with a
weakly pronounced shoulder at 330–380 mV indicated the impact of other compounds on
the oxidation peak and was confirmed by the standard addition method. The recovery
of 85–87% was obtained and agreed well with the chemical composition of rosemary,
in particular, phenolic acids and flavonoids [11–13] that interfered with rosmarinic acid
determination.
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Figure 5. Baseline-corrected DPVs of 50 µL rosemary extract at the MnO2 NRs–HDPB/GCE in BRB
pH 5.0. Conditions of DPV are similar to Figure 4.

Therefore, the first oxidation peak of rosemary extract could be applied for the spice
antioxidant capacity assay using rosmarinic acid equivalents. Corresponding data for
rosemary of different trademarks are presented in Table 2.

Table 2. Antioxidant capacity of rosemary in rosmarinic acid equivalents based on the voltammetric
determination using MnO2 NRs–HDPB/GCE in BRB pH 5.0 (n = 5; p = 0.95).

Rosemary Sample Antioxidant Capacity
(µg of Rosmarinic Acid g−1) RSD (%)

1 219 ± 7 2.5
2 737 ± 27 3.0
3 186 ± 5 2.0

Thus, a highly sensitive rosmarinic acid voltammetric assay was developed using
MnO2 NRs–HDPB/GCE. The practical applicability was demonstrated on the rosemary
spices antioxidant capacity measuring.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ASEC2023-15254/s1. Table S1: Comparison of rosmarinic acid
analytical characteristics on various electrodes.
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