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Abstract: The anti-inflammatory drug ketoprofen has shown promising results in the field of drug
repurposing for the treatment of brain cancer, but currently developed formulations are for invasive
administration (intravenous) and have very limited drug strength. Hence, the purpose of this
work was to develop an intranasal oil-in-water nanoemulgel, with drug strength maximization,
for non-invasive, more effective and safer treatment of glioma. The developed formulations were
made of Capryol® 90 (hydrophobic surfactant), Tween® 80 (hydrophilic surfactant), Transcutol®

(co-solvent and permeation enhancer), Pluronic® F-127 (surfactant and gelling agent) and ketoprofen.
Droplet size, polydispersity index, in vitro drug release and accelerated stability were measured.
The results showed that the addition of Pluronic to a preliminary optimized nanoemulsion led to a
significant droplet size and PDI reduction (176 to 22 nm and 0.3 to 0.1, respectively). The achieved
drug strength was 4 mg/mL, which is more than 50 times higher than ketoprofen’s aqueous solubility.
The developed formulations also appeared to have high stability, with instability indexes between
0.130 and 0.265, and a high cumulative drug release percentage, varying between 78 to 93% after
24 h. The formulations also showed a controlled release profile, fitting a Korsmeyer–Peppas kinetic
model, with low AIC (43.84 to 54.67) and high R2 (0.9725 to 0.9971) values, depicting non-Fickian
diffusion (n between 0.7 and 0.8). Hence, high-drug-strength, high-stability and high-drug-release
ketoprofen-loaded nanoemulgels were successfully prepared. Future in vitro cytotoxicity evaluations
in glioma cells will assess the true potential of the developed formulations for the treatment of
brain cancer.
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1. Introduction

A new drug molecule takes more than 10 years to reach the pharmaceutical market
and costs more than EUR 1 billion. On the other hand, drug repurposing, which is the
redirecting of marketed drugs for therapeutical purposes different from the ones they
were first approved for, takes about half of that time and also costs about half as much,
making it a much less time-consuming and expensive strategy. Moreover, the fact that
the repurposed drug molecule’s characteristics are already known (chemical properties,
biodistribution and safety) can be a significant advantage in all stages of pharmaceutical
product development. Due to the high potential of this approach, drug repurposing is
being performed for several diseases, such as neurological diseases (Alzheimer’s disease
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and Parkinson’s disease); infectious diseases (bacterial, fungal or viral infections); and
oncologic diseases, including colorectal, prostate, ovarian, breast, lung, pancreatic, gastric,
skin and brain cancer. Specifically, for cancer treatment, drug repurposing could be the
way to find less expensive treatments that also have less side effects [1–5].

Ketoprofen, an anti-inflammatory and analgesic drug, has shown promising results
in the field of drug repurposing for the treatment of brain cancer, namely glioma [6,7].
Although the exact mechanisms by which it has an antitumor effect in brain cancer have
yet to be elucidated, it is thought to exhibit its anticancer properties due to cyclooxygenase
inhibition, caspase activation and cell cycle arrest, which ultimately lead to cancerous
cell death [8–12].

Nevertheless, formulations that have already been developed are for invasive admin-
istration only (intravenous) and have very limited drug strength [6,7]. Hence, the purpose
of this work was to develop an intranasal oil-in-water nanoemulgel, with drug strength
maximization, for non-invasive, more effective and safer treatment of glioma.

2. Materials and Methods

Ketoprofen, Tween® 80 (polysorbate 80) and Pluronic® F-127 (poloxamer 407) were
purchased from Sigma-Aldrich (Steinheim, Germany). Capryol® 90 (propylene glycol
monocaprylate, type II) and Transcutol® (diethylene glycol monoethyl ether) were gift
samples from Gattefossé (Lyon, France).

The preliminary oil-in-water nanoemulsions were prepared by spontaneous emul-
sification. The first step was adding and mixing different ratios of Capryol 90 (oil and
hydrophobic surfactant), Tween 80 (hydrophilic surfactant) and Transcutol (co-solvent,
co-surfactant and permeation enhancer), with ratios varying from 1 to 6 parts Capryol,
1 to 6 parts Tween and 3 to 5 parts Transcutol, to make a preconcentrate. After this, the drug
was solubilized in the prepared preconcentrate, and only after was the water added and
mixed, giving origin to preliminary nanoemulsions. Lead nanoemulsions were transformed
into nanoemulgels by adding a Pluronic® F-127 (surfactant and gelling agent) aqueous
solution to the preconcentrate, instead of water.

Both preliminary nanoemulsions and final nanoemulgels were characterized for
droplet size and polydispersity index (PDI), zeta potential, in vitro drug release and accel-
erated stability. Droplet size and PDI were measured with dynamic light scattering, and
zeta potential was measured with electrophoretic light scattering, using a Zetasizer Nano
ZS apparatus (Malvern, United Kingdom).

In vitro drug release assays were performed in Franz diffusion cells (PermeGear,
Pennsylvania, United States of America), using synthetic membranes (cellulose dialysis
tubing membranes, Sigma-Aldrich, Steinheim, Germany), with temperature being kept at
mean nasal temperature (35 ◦C). The receptor compartment was filled with 5 mL of nasal
simulant fluid, pH 6.5 (monobasic sodium phosphate 7 mM, dibasic sodium phosphate
3 mM, potassium chloride 30 mM, sodium chloride 107 mM, calcium chloride 1.5 mM,
magnesium chloride 0.75 mM and sodium hydrogen carbonate 5 mM), and 200 µL of the test
formulations was placed in the donor compartment on the upper side of the membrane. The
experiments were performed under constant stirring, and 300 µL samples were collected
at predetermined times (5, 10, 20, 40, 60, 120, 240, 360 and 1440 min), followed by volume
replacement with a new buffer solution. Drug sample quantification was performed with
absorbance reading at 300 nm in 96-well polystyrene plates (flat bottom, Orange Scientific,
Braine-l’Alleud, Belgium) using a microplate reader (xMark spectrophotometer, Bio-Rad,
Tokyo, Japan).

Formulation accelerated stability was assessed by photocentrifugation (LUMiSizer,
LUM GmbH, Berlin, Germany), with transmission profiles being at a wavelength of 865 nm
(CCD-line detector), recorded in 5 s intervals for a total of 1000 profiles in capped disposable
polycarbonate cells at 4000 rpm. The formulations’ instability index was determined by
the equipment software (LUMiSizer SEPView®, Berlin, Germany), and an adimensional
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number between 0 and 1 was attributed to each preparation, with 0 meaning no formulation
physical destabilization and 1 meaning complete phase separation.

3. Results and Discussion

In order to maximize drug strength in the final formulation, preliminary preformula-
tion studies focused on nanoemulsions with a 1:1 preconcentrate-to-water ratio. In these
emulsions, after varying the Capryol-to-Tween ratio (and maintaining Transcutol at high
amounts in the preconcentrate, namely 30, 40 and 50%, for increased drug solubilization),
it was evident that a lower ratio led to smaller droplet size and lower PDI values (Fig-
ure 1A,B). These results were expected, since over the years, many studies have proven that
a higher hydrophilic surfactant concentration will lead to smaller and more homogeneous
nanosized droplets due to more decreased interfacial tension [13–15].
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Additionally, Pluronic addition to the external phase of a selected preliminary na-
noemulsion at various concentrations led to a significant droplet size and PDI reduction
(Figure 1C,D), from around 176 to 22 nm and from around 0.3 to 0.1, respectively. This was
due to the fact that, aside from being a thermosensitive gelling polymer under the right
circumstances, Pluronic F-127 is also a potent surfactant, which led to a further drop in
interfacial tension.

Nevertheless, even when attempting to increase Pluronic F-127 concentration in the
formulations up to levels where it is known to gellify around room temperature [16], we
were not able to produce true nanoemulgels (fluid consistency even under heating up to
40 ◦C). Therefore, the amount of preconcentrate in the final formulation was decreased,
and the amount of Pluronic solution was increased, until nanoemulgels that had good
droplet size and PDI and were gels at mean nasal temperature (35 ◦C) and fluid under
refrigeration (4 ◦C) were obtained. After several attempts, it was not possible to make
formulations that were fluid under refrigeration and at room temperature (20 or 25 ◦C)
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and gels at mean nasal temperature (35 ◦C), but it was possible to develop nanoemulgels
that were fluid under refrigeration and gels both at room temperature and mean nasal
temperature. Hence, it would be possible to administer these formulations immediately
after refrigeration, and when reaching the nasal cavity, they would form a gel quickly,
hence decreasing mucociliary clearance and increasing nasal retention time, giving more
time for the drug to be absorbed.

Three final formulations were obtained, with a preconcentrate-to-Pluronic F-127 solu-
tion proportion of 1:9 or 2:8 and with Pluronic F-127 either at 8, 10 or 11% (w/w%). Drug
incorporation into these formulations did not significantly change their characteristics
(droplet size and PDI), and the final achieved drug strength was 4 mg/mL, which was
at least more than 50 times higher than ketoprofen’s aqueous solubility [17,18]. The zeta
potential values were essentially neutral (between −10 and +10 mV) [19,20], which was
also expected since all used excipients were also neutral (uncharged).

Additionally, the developed nanoemulgels appeared to have good physical stability,
with instability indexes between 0.130 and 0.265 in accelerated stability studies (Figure 2).
Drug incorporation into the formulations did not seem to have a significant effect on
formulation stability (vehicle- vs. drug-loaded preparations).
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or 8% (P8) Pluronic, encapsulating ketoprofen (drug-loaded) or not (vehicle).

The selected formulations were evaluated for in vitro drug release, and all led to
high cumulative drug release percentages after 24 h, varying between 78 and 93%, and
being comparable to the positive control, a drug solution (Figure 3). The formulations also
showed a controlled release profile, fitting a Korsmeyer–Peppas kinetic model, with low
AIC (43.84 to 54.67) and high R2 (0.9725 to 0.9971) values, depicting non-Fickian diffusion (n
between 0.7 and 0.8), which was indicative that the drug was released from the developed
formulations in a combination of both diffusion from within the oil-phase droplets and
slow erosion of the droplets themselves, which is in accordance with previous studies [21].
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