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Abstract: The occurrence and spread of antibiotic resistance have become a pressing global health
concern. Understanding the genetic elements that facilitate the dissemination of antibiotic resistance
genes (ARGs) in marine environments is crucial for effective microbial surveillance and management
strategies. This study aimed to reveal the presence of mobilizable multiresistance clusters, consisting
of ARGs associated with mobile genetic elements (MGEs), in marine bacterial communities. Water
samples were collected from two beaches in Jeju, South Korea, and screened to identify multi-
drug resistant bacteria. A total of 20 bacterial isolates were selected for whole genome sequencing,
and through comprehensive genomic analysis, we identified and characterized nine such clusters
primarily composed of betalactams, aminoglycosides, and tetracycline ARGs associated with MGEs
like IS6, IS9, and Tn3. Additionally, an extensive analysis of 900 marine bacterial genomes from the
National Center for Biotechnology Information (NCBI) database was conducted to gain a broader
perspective. Our results provide valuable insights into the prevalence and diversity of mobilizable
multiresistance clusters in marine bacterial communities.

Keywords: antimicrobial resistance; mobile genetic elements; multiresistance clusters; genetic
dissemination

1. Introduction

Antibiotic resistance is a global concern in the realm of human health. The emer-
gence of community-acquired infections caused by resistant bacteria has amplified interest
in natural environments [1]. These natural environments encompass a diverse range of
ecosystems, including animals, soils, glaciers, and marine habitats, all of which serve as
pivotal reservoirs for antibiotic resistance genes (ARGs). Despite the typically dilute nature
of marine waters, they have evolved into significant reservoirs for antibiotic resistance.
This phenomenon is primarily driven by escalating anthropogenic activities, which facil-
itate the introduction of antibiotic-resistant bacteria and residual antibiotics into marine
ecosystems. Consequently, it is imperative to acquire a comprehensive understanding of
the dissemination patterns of antibiotic resistance among marine bacteria. This knowledge
is fundamental for the implementation of effective antibiotic control measures and the
development of strategies to address this pressing issue [1].

Mobile genetic elements (MGEs), such as insertion sequences and transposons, possess
the remarkable capacity to capture ARGs from bacterial chromosomes and subsequently
transfer them horizontally, either through plasmids or phages, to other bacterial species.
In this study, our objective is to illuminate the prevalence of ARGs within marine bacteria
and their genomic colocation with MGEs. This research promises to yield valuable insights
into the potential for ARG dissemination among marine bacteria, which, in turn, may
exacerbate the spread of antibiotic resistance within marine ecosystems.
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2. Materials and Methods

Water samples were collected in triplicate from Jungmun beach, located in Jeju, South
Korea. Culturable bacteria were isolated from these samples using Marine agar (BD Difco,
Difco Laboratory, Detroit, MI, USA) by incubating at 30 ◦C. Subsequently, isolates were
sub-cultured on trypticase soy agar (BD Difco) with 3% additional salt content at 30 ◦C. A
total of 100 distinct colonies were selected for plasmid carriage determination based on their
resistance to 14 different antibiotics, as determined through a disk diffusion test. Isolates
exhibiting resistance to three or more distinct antibiotics were then screened for plasmids
using the alkaline lysis method. This process identified 60 plasmid-carrying isolates whose
plasmid sizes were estimated using gel electrophoresis. Twenty isolates were selected from
this group based on the distinct sizes of their plasmids for further analysis.

DNA from these 20 isolates was extracted using the QIAamp DNA Mini kit (Qiagen,
Hilden, Germany), and the DNA quantity was assessed using QubitTM (Thermo Fisher
Scientific, Waltham, MA, USA). Short-read sequencing was conducted using Illumina
Hiseq 2500 (Macrogen, Seoul, Republic of Korea), while long-read sequencing employed
MinION (Oxford nanopore technology). Raw reads from MinION were subjected to quality
trimming using fastp [2] and Filtlong (https://github.com/rrwick/Filtlong/, accessed
on 23 January 2022), respectively. Assembly was performed using Unicycler [3], and
taxonomic identification was carried out via the RDP classifier [4]. Further, functional
analysis for antibiotic resistance genes was executed using AMRFinder [5], and mobile
genetic elements (MGEs), including plasmids, prophages, transposons, and integrases were
identified through plasmidFinder [6], phaster [7], and Isescan [8].

To complement our findings, we retrieved 900 marine bacterial genomes from the Na-
tional Center for Biotechnology Information (NCBI) for additional analysis (Figure 1). The
assembly and analysis of these genomes followed the same procedures mentioned above.
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Figure 1. Graph representing prominent bacterial genomes at the genus level, featuring more than
10 species, retrieved from NCBI.

3. Results and Discussion

Taxonomic analysis revealed that the isolated bacteria belonged to various species,
including Vibrio cholera (6), Vibrio alginolyticus (4), Vibrio parahaemolyticus (3), Phaeobacter
inhibens (3), Aeromonas salmonicida (2), and Edwardsiella anguillarum (2). Antibiotic suscep-
tibility testing (AST) showed increased resistance to beta-lactam, aminoglycoside, and
tetracycline antibiotics, particularly within the Vibrio species, aligning with genotypically
identified ARGs as shown in Table 1.

https://github.com/rrwick/Filtlong/
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Table 1. The alignment of phenotypic resistance with the corresponding genotypic resistance in MDR
marine bacteria.

Bacterial
Taxonomy Antibiotic Class AST ARG Plasmids Prophages

Vibrio
cholerae

Betalactam

Ampicillin
Imipenem

Meropenem
Ceftazidime

blaTEM-1
blaS1

YEM-1
IncFII_1 (2)

IncH12A-1 (2)
Unnamed

plasmids (3)

PHAGE_Vibrio_K139
PHAGE_Vibrio_VP882
PHAGE_Klebsi_ST16

PHAGE_Escher_520873 (2)Aminoglycoside Kanamycin cpxA

Tetracycline Oxytetracycline tetA

Vibrio
alginolyticus

Betalactam
Ampicillin
Imipenem
Aztreonam

blaOXA50
MexR

p3442-IMI-2c
Unnamed

plasmids (3)

PHAGE_Vibrio_K139
PHAGE_Vibrio_VfO3K6 (2)

PHAGE_Vibrio_VCY (2)
PHAGE_Erwini_vB_EhrS (2)

Aminoglycoside Kanamycin AAC(6’)-34

Tetracycline Oxytetracycline tetA, tetB

Fluoroquinolones Ciprofloxacin oqxA, oqxB

Phenicol Chloramphenicol Cat

Vibrio
parahaemolyticus

Betalactam
Ampicillin
Imipenem
Aztreonam

blaXCARB2
MexR

Unnamed
plasmids (3)

PHAGE_Vibrio_K139
PHAGE_Klebsi_ST16
PHAGE_Klebsi_ST17

PHAGE_Staphy_Spbeta

Aminoglycoside Kanamycin AAC(6’)-34

Tetracycline Oxytetracycline tetB

Polymyxin B Colistin PmrC

Phaeobacter
inhibens

Betalactam Ampicillin blaTEM-1
IncFII_1

Unnamed
plasmids (4)

PHAGE_Entero_mEp237
PHAGE_Entero_mEp235

Fluoroquinolones Levofloxacin gyrA, gyrB

Phenociol Florfenicol floR

Aeromonas
salmonicida

Aminoglycoside Kanamycin cpxA IncFII_1
Unnamed

plasmids (2)

PHAGE_Entero_mEp237 (2)
PHAGE_Klebsi_ST17

PHAGE_Salmon_118970_sal3 (2)Tetracycline Oxytetracycline tetB

Edwardsiella
anguillarum

Betalactam Ampicillin blaTEM-1 Unnamed
plasmids (2)

PHAGE_Entero_mEp235
Polymyxin B Colistin eptA

These antibiotics are extensively used in livestock farms for treatment and prophylactic
purposes [9]. This suggests that the antibiotic residues from neighboring livestock farms
may intensify the selective pressure on marine bacteria, leading to heightened resistance
to these antibiotics. Moreover, multi-drug resistant (MDR) Vibrio species are significant
pathogens for aquatic life and humans. Therefore, the resistance observed in these isolates
may pose an increased risk to both human and animal health [10].

The concordance observed between phenotypic and genotypic resistance implies the
potential utility of whole genome sequencing for resistance surveillance across diverse
environments [11]. Genomic analysis unveiled the presence of 25 intact prophages in the
MDR isolates, with PHAGE_Vibrio_K139 (n = 3) and PHAGE_Entero_mEp237 (3) being the
most prevalent. The majority of these prophages were classified within the Siphoviridae
family. (Figure 2). These findings inspired us to further investigate the functional roles
of these prophages and their potential influence on the prevalence of antibiotic resistance
within marine bacterial species.

Furthermore, our analysis unveiled the presence of 24 plasmid sequences encoded
within these bacterial genomes. These plasmids exhibited diversity, with the majority
categorized as Unnamed plasmids (17), while others belonged to the IncFII_1 (4), IncH12A-
1 (2), and p3442-IMI-2c (1) categories (see Table 1). The co-occurrence of plasmids and
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prophages within these genomes is a noteworthy observation, as it implies a potential
interplay between mobile genetic elements and their role in shaping the genetic landscape
of these marine bacterial species [12].
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Figure 2. The taxonomic classification and host range of prophages encoded by marine bacterial
genomes (900).

We identified a total of nine distinct associations between ARGs and MGEs within
both prophage-like sequences (Figure 3) and plasmid contigs (Figure 4). Notably, MGEs
such as IS6, IS5, and IS110 exhibited predominant associations with ARGs. These specific
MGEs are recognized for their capacity to facilitate the transposition of associated genes
within genomes, subsequently transferring them to other horizontally gene transfer (HGT)
vehicles, including plasmids and prophages [13].
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Figure 3. Three distinct associations between ARGs and MGEs were identified, each encoded within
a unique prophage-like sequence. Notably, all three of these sequences were found to be prevalent
among Vibrio alginolyticus isolates.

Significantly, we have identified two prophage-like sequences, Vibrio phage VP882
and Vibrio phage VFO3k6, each encoding betalactam (blaTEM-1) and aminoglycoside
(aph(3′′)-Ib) genes, respectively, within various marine bacterial species (Figure 5). Notably,
these genes exhibited 100% identical sequences across these diverse species. This highlights
transduction as a key driver in the widespread distribution of ARGs by these prophages,
showcasing their remarkable conservation [14].
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Figure 4. Mobile resistance clusters encoded by plasmid and prophage-like sequences: six distinctive
ARG and MGE associations found within five distinct bacterial species.
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4. Conclusions

Our study sheds light on the intricate dynamics of antibiotic resistance in marine
bacterial communities, revealing the significant role of plasmids and prophages in ARGs’
spread. Future research should delve deeper into the functional roles of these MGEs.
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