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Abstract: Acid Red 88 (AR88) is an azo dye highly used in the textile industry. This industry generates
high volumes of wastewater with recalcitrant properties that can persist in nature for many years.
This work intends to use a statistical model to better predict and understand the influence of different
operational conditions. A Box-Behnken response surface methodology (RSM) was used, in which
variables (H2O2, Fe2+, and radiation intensity) were changed. At the same time, the RSM model
allowed the assessment of several advanced oxidation processes (AOPs). The results exhibited the
photo-Fenton process as the most efficient, and the best operational conditions ([AR88] = 0.125 mM,
pH = 3.0, [H2O2] = 7.9 mM, [Fe2+] = 0.22 mM, time = 30 min) were used in four different reactors
(UV-C, UV-A, ultrasound, and solar). US reactors achieved high AR88 removal (98.2%, 50 min),
similar to UV-C and UV-A (97.8 and 98.2%, respectively, 60 min). A solar reactor is concluded to be
the most feasible choice, with 98.4% AR88 removal after 25 min.

Keywords: Box-Behnken model; solar radiation; ultrasound; UV-C radiation; UV-A radiation

1. Introduction

Acid Red 88 (AR88) is a textile dye used in fabrication sectors like leather, cosmet-
ics, textiles, food treatment, pharmaceuticals, printing, etc. [1]. Due to the washing of
printed textile products, it generates extensive wastewater volumes filled with different
types of dyes, causing waste (280,000 tons of dyes/year) [2]. When disposed of without
proper treatment in water streams, dyes are stable to light. As oxidizing agents, the waste
dyes discharged in wastewater disrupt light transmission in water bodies, inhibiting the
photosynthetic activity of aquabiota [3].

Advanced oxidation processes (AOPs) were accepted as successful, feasible treatments
for contaminant elimination [4,5]. They are based on hydroxyl radical (HO•) production,
are non-selective, and are greatly reactive, with an E◦ of 2.80 V, degrading organic contam-
inants that are considered to be recalcitrant [6]. Among the AOPs, it can be highlighted
ozonation, direct UV, UV/H2O2, UV/H2O2/O3, Fenton (H2O2/Fe2+), and photo-Fenton
(UV/H2O2/Fe2+) [7,8]. In photo-Fenton processes, different UV sources can be applied to
treat wastewater, such as UV-C [9], UV-A [10,11], and solar [12]. In recent years, ultrasonic
radiation has been shown to be an efficient alternative to conventional radiation sources.
Thus, the aim and novelty of this work were to create a statistical model that could be
applied to different reactors to treat textile wastewater.
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2. Material and Methods
2.1. Reagents

Acid Red 88 (C20H13N2NaO4S), iron (II) sulfate heptahydrate, hydrogen peroxide
(H2O2 30% w/w), sodium hydroxide, and sulfuric acid were supplied by José Manuel
Gomes dos Santos, Portugal. Solutions were groomed with distilled water.

2.2. Fenton-Based Processes (FBPs) Setup

FBPs were performed in a reactor with a capacity of 250 mL, and all its internal surfaces
were formed by mirrors. As radiation sources, it employed (a) UV-A LEDs (12 Indium
Gallium Nitride lamps, λmax = 365 nm, 32.7 W m−2 power); (b) a UV-C low-pressure
mercury vapor lamp (λmax = 253.7 nm, Heraeus, Hanau, Germany); (c) an ultrasonic
processor with 500 W power (Vibracell, Church Hill Rd., Newtown, CT, USA); (d) solar
radiation, employing a silver-coated panel to reflect the sun light. To optimize the Fenton-
based processes, an RSM Box-Behnken design was employed in a solution with 0.125 mM
AR88, pH 3.0, and a time of 30 min. Three autonomous variables were used in this
study (Table 1): H2O2 concentration (X1), Fe2+ concentration (X2), and UV-A radiation
intensity (X3).

Table 1. Symbols and coded factor levels of variables.

Parameters Code Levels
−1 0 1

[H2O2] mM X1 0 4 8
[Fe2+] mM X2 0 0.15 0.30
IUV W m−2 X3 0 18.3 32.7

To determine the concentration of AR88 removed, a calibration curve was obtained
by varying different AR88 concentrations (0, 10, 50, 100, 150, 200, 250, and 300 mg/L).
AR88 concentration was determined by a calibration curve (λmax = 505 nm). The removal
percentage of AR88 was determined by Equation (1), where [AR88]0 and [AR88]t are
concentrations of AR88 at time 0 and t, respectively:

Removal (%) =
[AR88]0 − [AR88]t

[AR88]0
× 100 (1)

Furthermore, 2 mL of dye solution was retreated at regular intervals and analyzed in
the UV-vis scanning spectrum at 200–800 nm (Genesis, Tokyo, Japan). All the experiments
were performed in triplicate, and statistical analysis was performed using Minitab Statistical
Software version 21.1.0 (State College, PA, USA).

3. Results and Discussion
3.1. Response Surface Methodology—Box-Behnken Design

The AR88 degradation was optimized by the performance of a Box-Behnken design
with three independent variables. Table 2 shows the observed and predicted values of
AR88 concentration after each experiment.

Table 2. Box-Behnken design: operational variables consequence on AR88 removal.

Experiment Coded Level AR88 Removal (%)

X1 X2 X3 Observed Predicted

F1 0 0.30 18.3 61.2 56.8
F2 4 0.15 18.3 96.3 96.3
F3 8 0.15 0.0 84.1 81.6
F4 4 0.15 18.3 96.3 96.3
F5 0 0.15 32.7 57.3 59.8
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Table 2. Cont.

Experiment Coded Level AR88 Removal (%)

X1 X2 X3 Observed Predicted

F6 4 0.15 18.3 96.3 96.3
F7 0 0.00 18.3 0.0 0.0
F8 4 0.00 32.7 0.0 8.1
F9 4 0.00 0.0 0.0 0.0
F10 4 0.30 32.7 91.7 93.6
F11 8 0.00 18.3 0.0 4.4
F12 0 0.15 0.0 28.2 40.7
F13 8 0.15 32.7 96.3 83.8
F14 4 0.30 0.0 90.5 82.4
F15 8 0.30 18.3 96.0 100.0

Intercept, linear, quadratic, and interaction regression coefficients were determined
(least squares method) by analysis of variance (ANOVA) (Table 3). The models did not
display a significant lack of fit (p > 0.05); thus, these statistical parameters designated
well-fitting models for the described variables.

Table 3. Analogous F-values and p-values for tabbed responses for each coefficient. n.s.: Non-
significant. Significant at * p < 0.05 and *** p < 0.001.

Variable X1 X2 X3 X1X1 X1X2 X1X3 X2X2 X2X3 X3X3

F-value 14.39 98.54 1.55 8.22 2.07 0.49 38.36 0.00 3.51
p-value * *** n.s. n.s. n.s. n.s. * n.s. n.s.

The regression coefficient (R2) was 0.970, meaning that the model meets AR88 removal
appropriately. The response surface plots gathered supported the contribution to the
optimal AR88 removal condition for each variable evaluated and were confirmed by the
value of the coefficient of each factor obtained in the polynomial equation (Equation (2)).

Y = −31.7 + 11.95 X1 + 742 X2 + 65.6 X3 − 1.127 X1 × X1 − 1732 X2 × X2 −
47.1 X3 × X3 + 14.5 X1 × X2 − 2.11 X1 × X3 + 4.0 X2 × X3

(2)

Based on the RSM, different AOPs were studied under the operational conditions
[AR88] = 0.125 mM, pH = 3.0, [H2O2] = 4 mM, [Fe2+] = 0.30 mM, radiation UV-A 32.7 W m−2,
time = 30 min. Results obtained showed an AR88 removal of <0.5% with enforcement
of H2O2, UV-A, and H2O2 + UV-A (Figure 1a). These AOPs were not able to generate
hydroxyl radicals (HO•) to degrade the AR88, which agrees with Do et al. [13], who showed
only 4% removal of methylene blue with H2O2 and visible light. With the application of
UV-A + Fe2+, the action of the UV wavelength improved, and AR88 removal achieved
61.2%. The highest removals achieved with the Fenton and photo-Fenton processes reached
an AR88 removal of 90.5 and 91.7%, respectively. This removal is due to the HO• pro-
duction of H2O2 with the Fe2+ reaction. The higher AR88 color removal observed in the
photo-Fenton process suggests that a certain regeneration of Fe2+ took place, increasing
the removal rate [14,15]. Throughout the use of the statistical program, the best opera-
tional conditions were obtained: pH = 3.0, [H2O2] = 7.9 mM, [Fe2+] = 0.22 mM, radiation
UV-A = 32.7 W m−2, and time = 30 min.
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Figure 1. (a) AOPs variation in AR88 color removal ([AR88] = 0.125 mM, pH = 3.0, [H2O2] = 4 mM, 
[Fe2+] = 0.30 mM, radiation UV-A 32.7 W m−2, time = 30 min); (b) variation of radiation sources 
([AR88] = 0.125 mM, pH = 3.0, [H2O2] = 7.9 mM, [Fe2+] = 0.224 mM, time = 30 min). 

3.2. Variation of Radiation Sources 
In order to increase the AR88 removal rate, several radiation sources (UV-C, UV-A, 

ultrasound and solar) were applied in combination with the best operational conditions 
obtained in Section 3.1 to a solution with an AR88 concentration of 0.250 mM (Figure 1b). 
Results showed color removal of 97.8% (60 min), 98.2% (60 min), 98.2% (50 min), and 
98.4% (25 min), respectively, for UV-C-Fenton, UV-A-Fenton, US-Fenton, and solar-Fen-
ton. They agree with Teixeira et al. [16], who recognized elevated removal of acid red 88 
with the application of UV-A radiation. 

4. Conclusions 
An RSM statistical model can be useful to optimize the conditions of AR88 color re-

moval by Fenton-based processes. The employment of UV radiation enhances AR88 re-
moval from aqueous solutions. Finally, it is concluded that solar-Fenton is the most effi-
cient, environmentally friendly, and economic process to remove the AR88. 
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Figure 1. (a) AOPs variation in AR88 color removal ([AR88] = 0.125 mM, pH = 3.0, [H2O2] = 4 mM,
[Fe2+] = 0.30 mM, radiation UV-A 32.7 W m−2, time = 30 min); (b) variation of radiation sources
([AR88] = 0.125 mM, pH = 3.0, [H2O2] = 7.9 mM, [Fe2+] = 0.224 mM, time = 30 min).

3.2. Variation of Radiation Sources

In order to increase the AR88 removal rate, several radiation sources (UV-C, UV-A,
ultrasound and solar) were applied in combination with the best operational conditions
obtained in Section 3.1 to a solution with an AR88 concentration of 0.250 mM (Figure 1b).
Results showed color removal of 97.8% (60 min), 98.2% (60 min), 98.2% (50 min), and 98.4%
(25 min), respectively, for UV-C-Fenton, UV-A-Fenton, US-Fenton, and solar-Fenton. They
agree with Teixeira et al. [16], who recognized elevated removal of acid red 88 with the
application of UV-A radiation.

4. Conclusions

An RSM statistical model can be useful to optimize the conditions of AR88 color
removal by Fenton-based processes. The employment of UV radiation enhances AR88
removal from aqueous solutions. Finally, it is concluded that solar-Fenton is the most
efficient, environmentally friendly, and economic process to remove the AR88.
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