

Proceeding Paper Modeling and Simulation of Chemical Absorption Methods for CO₂ Separation from Cement Plant Flue Gases [†]

Zafar Turakulov ^{1,2,*}^(b), Azizbek Kamolov ^{1,2}^(b), Jaloliddin Eshbobaev ¹^(b), Abror Turakulov ³^(b), Adham Norkobilov ³^(b) and Ravshan Boboyorov ¹

- ¹ Department of Informatics, Automation, and Control, Tashkent Chemical-Technological Institute, Tashkent 100011, Uzbekistan; azbkamolov@gmail.com (A.K.); eshbobayevjalol@gmail.com (J.E.); boboyorovrovshan@gmail.com (R.B.)
- ² Department of Chemical and Biomolecular Engineering, University of Cantabria, 39005 Santander, Spain
- ³ Department of Engineering Technologies, Shahrisabz Branch of Tashkent Chemical-Technological Institute, Shahrisabz 181306, Uzbekistan; tktishf@gmail.com (A.T.); adham.norkobilov@gmail.com (A.N.)
- Correspondence: webdastur@gmail.com
- * Presented at the 4th International Electronic Conference on Applied Sciences, 27 October–10 November 2023; Available online: https://asec2023.sciforum.net/.

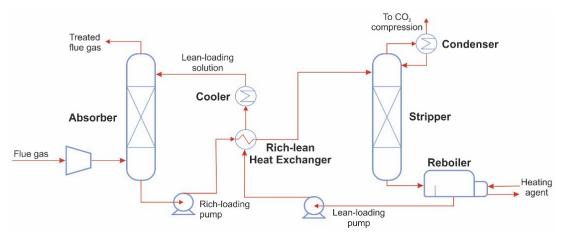
Abstract: Climate change, especially global warming, is observed due to greenhouse gases released on an industrial scale. For this reason, progress is being made around the world to reduce CO_2 emissions and transition to sustainable energy sources. One of the most mature methods of capturing CO_2 from flue gases in industrial sectors is chemical absorption. This work analyzed the absorption process involved in capturing CO_2 from the flue gases of a 1 Mt cement plant. The Aspen Plus modeling package was used to simulate the flue gas pre-treatment; absorption column; and regeneration unit. As a result of the modeling, the optimal values of column sizes; heat duty; and solvent make-up that require the least capital and operational costs for capturing CO_2 in the flue gases of this plant were determined. When a 40% MEA solution was used, and the CO_2 loading in the absorption-stripping process was 0.25 mol/mol, the reboiler heat duty was 4.06 MJ/kg CO_2 .

Keywords: climate change; absorption; modeling; heat duty; flue gas; CO₂ capture

1. Introduction

Since the onset of the industrial revolution, human activities have had detrimental effects on the natural environment, resulting in widespread climatic alterations around the globe. The release of carbon dioxide (CO₂) gas into the atmosphere stands as one of the main contributors causing climate change [1]. Carbon capture, utilization, and storage (CCUS) technology including post, pre, and oxy-fuel combustion CO₂ capture methods has emerged as a very effective method for mitigating anthropogenic carbon dioxide (CO₂) emissions [2].

Currently, the amine-based chemical absorption method has achieved the highest level of maturity in post-combustion CO_2 capture [3]. Amine-based carbon capture technology has been effectively used for capturing CO_2 from flue gases with a low CO_2 concentration [4]. This technology has found application in large-scale power plants, cement plants, and other sectors with significant carbon emissions [5]. Figure 1 illustrates the basic flow diagram of the absorption-based carbon capture process. In this process, the CO_2 present in the flue gas stream, which comes from the cement plant, has a reaction with the solvent inside the absorption column. Subsequently, the solvent, which is enriched with CO_2 , is thermally regenerated within the stripper column. The lean-loading solution, which is free from CO_2 , is returned to the absorption column after a process of heat exchange with the rich-lean solution and subsequent cooling. The CO_2 stream with a high level of purity is


Citation: Turakulov, Z.; Kamolov, A.; Eshbobaev, J.; Turakulov, A.; Norkobilov, A.; Boboyorov, R. Modeling and Simulation of Chemical Absorption Methods for CO₂ Separation from Cement Plant Flue Gases. *Eng. Proc.* **2023**, *56*, 142. https://doi.org/10.3390/ ASEC2023-15352

Academic Editor: Simeone Chianese

Published: 26 October 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

conveyed in a process involving the compression and subsequent usage or storage of the carbon. A flue gas stream that has undergone treatment is discharged into the atmosphere.

Figure 1. Flow diagram of a basic chemical absorption for CO₂ capture (Modified from [6]).

In this work, a modeling-based study of the "tail-end" chemical absorption method for CO_2 separation from cement plant (with a 1 Mt production capacity annually) flue gases and the determination of the best values in different configuration system cases are considered. This study is considered part of the "Techno-economic evaluation of postcombustion CO_2 capture technologies for cement plant flue gases". Further future work will include comparative studies of this work as a benchmark technology with other near or early-stage post-combustion CO_2 capture technologies.

2. Methodology

2.1. Model Development

The core methodology for this research involves modeling and simulation using the Aspen Plus V12 software. Our key targets and constraints are set as follows: CO_2 removal efficiency must be greater than 90%, CO_2 purity should be greater than 95%, and the occurrence of flooding in the absorption/stripper columns must remain below 75%. The Aspen Plus process simulation software was chosen as the primary tool for modeling and simulating the selected CO_2 capture methods [7]. We developed simulation models that accurately represented the chosen chemical absorption methods. First, the absorber/stripper system was modeled and simulated on the open loop principle. Targets accepted CO_2 removal in the flue gases, the purity of CO_2 , and the column packing flooding factor to build the model. Packed column sizing was calculated for the selected packing material [8]. The rate-based model was the most used approach based on the two-film theory in the case of amine-based absorption. In the process of modeling, the following causes should be considered:

(a) Due to the high mole fraction of CO_2 , a higher liquid/gas ratio is required for CO_2 molecules to absorb into the liquid phase. This causes more energy to be spent on solvent regeneration;

(b) In order to reduce the column dimension, as well as to increase the gas/liquid transfer surface area, the selection of the packing material and the consideration of pressure drop and flooding are the most important requirements.

2.2. Case Study Scenarios

Our research incorporated case studies to evaluate the performance of the selected chemical absorption methods under diverse operating conditions. These scenarios encompassed variations in solvent properties (30 and 40% wt.) and CO₂ loading (0.134, 0.18, and 0.25 mol/mol) conditions (see Table 1). The composition of CO₂ in the incoming flue gas was consistent across all three cases, with a mole fraction of 0.1891. Examining

these scenarios, we estimated acceptable reboiler duty in the stripper column and solvent make-up values in the absorption method of CO_2 capture in cement plant flue gas.

Case 2 Case 1 Case 3 Absorption column Packing diameter 8.6 10 8.8 Packing height 35 45 35 **RASCHIGPAK 250Y** IMTP MELLAPAK 350Y Packing type Flooding, % 72 78.74 69 Stripping column 7.6 Packing diameter 8.2 5 Packing height 25 30 20 PALL BERL MELLAPAK 128X Packing type Flooding, % 58 60 72

Table 1. Hydraulic design and packing internals for absorption/stripping columns.

3. Results and Discussion

Table 2 presents the results of the modeling and simulation of the process of CO_2 separation in cement plant flue gases based on amine absorption. Each case provides information on the composition and the mass flows of various components, including MEA, H₂O, CO₂, N₂, and O₂. All the results fully satisfy the set targets and constraints.

Table 2. Modeling and simulation results.

	Case 1		Case 2		Case 3	
	Treated Flue Gas	CO ₂ Pipe	Treated Flue Gas	CO ₂ Pipe	Treated Flue Gas	CO ₂ Pipe
			Mole Fractions (%)			
MEA	0.047	0	0.05	0	0.04	0
H_2O	31.407	3.149	30.5	3.16	30.51	3.149
$\overline{CO_2}$	1.603	96.731	1.758	96.7	1.76	96.68
N_2	58.078	0.094	58.732	0.11	58.73	0.14
$\overline{O_2}$	8.865	0.027	8.96	0.03	8.96	0.03
			Mass Flows (kg/h)			
MEA	409.63	0	413.021	0	364.0955	0
H_2O	80,129.93	1287.60	81,234	1291.54	76,976.9	1278.431
$\overline{CO_2}$	9991.938	96,629.89	10,426.2	96,321.52	10,843.8	95,786.71
N_2	230,414.5	59.561	230,401	68.261	230,385.4	88.64532
$\tilde{O_2}$	40,174.43	19.583	401,168	27.2863	40,165.02	28.98953

The reboiler heat duty represents the amount of heat energy required to regenerate the MEA absorbent and release the captured CO_2 . This value in Case 1 is 5.62 MJ per kg of the captured CO_2 . In Case 2, the reboiler heat duty is slightly lower at 4.72 MJ/kg CO_2 . This indicates that Case 2 requires less energy to achieve the same level of CO_2 capture compared to Case 1. Case 3 has the lowest reboiler heat duty of 4.06 MJ per kg CO_2 . This suggests that it is the most energy-efficient among the three cases for capturing CO_2 using MEA absorption (see Figure 2).

In terms of MEA and water make up, Case 3 requires the lowest MEA and water makeup rate, which are 364 kg/s and 61.9 t/h, respectively. This implies that it consumes less MEA and H_2O to achieve CO_2 capture compared to the other cases with a smaller column dimension.

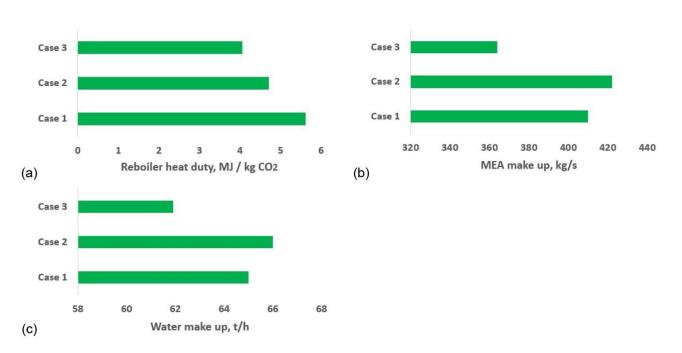


Figure 2. Case study scenarios results: (a) reboiler heat duty; (b) MEA make up; (c) water make up.

4. Conclusions

This study analyzed the CO₂ capture process in a 1 Mt cement plant using the Aspen Plus modeling software. The column sizes, heat duty, and liquid make-up values were determined using the modeling and case study methodology to minimize capital and operational costs. The reboiler heat duty with 4.06 MJ/kg of CO₂ in the stripper column was found to be the most energy-efficient among the three cases, with MEA 40% wt. and 0.25 mol/mol CO₂ loading condition, which requires the lowest MEA and water makeup rate, compared to other cases with smaller column dimensions.

Author Contributions: Conceptualization, A.N. and Z.T.; writing—original draft preparation, Z.T. and A.K.; visualization, Z.T., J.E. and A.T.; writing—review and editing, Z.T., R.B. and A.N.; supervision, A.N.; Z.T. and A.K. contributed equally to this paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: All authors acknowledge the members of the Department of Chemical and Biomolecular Engineering, University of Cantabria, for their guidance.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CCUSCarbon capture, utilization, and storageCO2Carbon dioxideMEAMonoethanolamineH2OWaterN2NitrogenO2Oxygen

References

- 1. Yoro, K.O.; Daramola, M.O. CO₂ Emission Sources, Greenhouse Gases, and the Global Warming Effect. In *Advances in Carbon Capture*; Woodhead Publishing: Sawston, UK, 2020. [CrossRef]
- Humayun, A.; Anwar, M.N. CO₂ Capture, Storage, Transformation, and Utilization: An Introduction. In *Nanomaterials for CO₂ Capture, Storage, Conversion and Utilization*; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–19. [CrossRef]
- 3. Turakulov, Z.; Kamolov, A.; Turakulov, A.; Norkobilov, A.; Fallanza, M. Assessment of the Decarbonization Pathways of the Cement Industry in Uzbekistan. *Eng. Proc.* 2023, *37*, 2. [CrossRef]
- 4. Kamolov, A.; Turakulov, Z.; Norkobilov, A.; Variny, M.; Fallanza, M. Decarbonization Challenges and Opportunities of Power Sector in Uzbekistan: A Simulation of Turakurgan Natural Gas-Fired Combined Cycle Power Plant with Exhaust Gas Recirculation. *Eng. Proc.* **2023**, *37*, 24. [CrossRef]
- 5. Zhang, K.; Bokka, H.K.; Lau, H.C. Decarbonizing the Energy and Industry Sectors in Thailand by Carbon Capture and Storage. *J. Pet. Sci. Eng.* **2022**, 209, 109979. [CrossRef]
- Wang, Y.; Zhao, L.; Otto, A.; Robinius, M.; Stolten, D. A Review of Post-Combustion CO₂ Capture Technologies from Coal-Fired Power Plants. *Energy Procedia* 2017, 114, 650–665. [CrossRef]
- Madeddu, C.; Errico, M.; Baratti, R. CO₂ Capture by Reactive Absorption-Stripping Modeling, Analysis and Design; Springer: Berlin/Heidelberg, Germany, 2018; p. 93.
- 8. Strigle, R.F. *Packed Tower Design and Applications: Random and Structured Packings*, 2nd ed.; Gulf Publisher: Houston, TX, USA, 1994; p. 340.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.