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Abstract: In this paper, we examine the impact of fear in an eco-epidemiological model with predator
harvesting and infection in a prey population. The effect of fear on susceptible prey due to infected
prey was discussed. A predator consumes susceptible and infected prey at various rates in the form
of a Holling type II Functional response. To examine the positivity and the boundedness of the
solutions, the stability of all biologically feasible equilibrium points, and the Hopf bifurcation of the
endemic equilibrium of the system, were derived. A numerical simulation was performed to support
our analytical findings.
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1. Introduction

Prey–predator models fall into two types: one is an ecological model and the other is
an epidemiological model. The ecological model involves interactions between organisms,
including humans, and their physical environment. Epidemiological models are used to
study diseases in animals and humans. Also, the above study of ecology and epidemiology
is called eco-epidemiology. In eco-epidemiology, we study prey–predator models with
disease dynamics. Predator–prey interactions have been included in the Lotka–Volterra
model for a very long time, see references [1–3]. In a similar vein, after the seminal work
of Kermack and McKendrick [4], the interaction of the susceptible, infected, and recov-
ered prey has been an interesting topic of study. The original predator–prey model was
developed in large part by Vito Volterra and Alfred James Lotka. Ecology models and
epidemiology models are the two basic categories into which mathematical models are
often divided. In ecological models, the interactions between populations of a particular
community are studied. Epidemiology models constitute the study of the spread of diseases
between animals and humans. It is increasingly crucial to carry out research on the dynam-
ics of illness within ecological systems. On the one hand, several studies of prey–predator
dynamics have been conducted in recent decades, taking into account the impact of a range
of biological characteristics, see, for example, reference [5]. Many mathematical models
have been created and investigated in the field of epidemiology, taking into consideration
various incidence rates and illnesses [6,7]. Ecology models and epidemiology models are
the two basic categories into which mathematical models are often divided. There are three
different forms of harvesting: constant, proportional to density, nonlinear, and others. All
of these have been proposed and investigated [8]. There have been several suggestions for
research harvesting methods, including harvesting continuously and depending on the
density in proportional harvesting.
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This piece is structured as follows: The prey–predator system’s past is described
in Section 1. In Section 2, the mathematical formulation is presented. The existence of
equilibrium points is described in Section 3. Local stability analyses are explained in
Section 4. Hopf Bifurcation Analysis is found in Section 5. The results are presented
numerically in Section 6. Finally, this paper concludes with a few observations about the
suggested system in Section 7.

2. Model Formation

The system of the equation is as follows:

dX
dT = r1X

1+ f Y (1−
X+Y

K )− λYX− α1XZ
a1+X ,

dY
dT = λYX− d1Y− b1YZ

a1+Y ,
dZ
dT = −d2Z + cb1YZ

a1+Y + cα1XZ
a1+X − HEZ.

 (1)

Then, the system changes to become non-dimensional. Here, x = X
K , y = Y

K , z = Z
K .

Now, the system becomes

dx
dt = rx(1−x−y)

1+ f y − xy− αxy
a+x

dy
dt = yx− dy− θyz

a+y
dz
dt = −δz + cθyz

a+y + cαyz
a+x − hz

 (2)

Here, the conditions are

r =
r1

λK
, α =

α1

λK
, h =

HE
λK

, d =
d1

λK
, θ =

b1

λK
, a =

a1

K
, δ =

d2

λK
, f =

F
K

Assuming the initial values are not negative x(0) ≥ 0, y(0) ≥ 0, and z(0) ≥ 0.
The detailed biological meanings of parameters are given in Table 1.

Table 1. Biological meanings for the parameters.

Parameters Biological Meaning

X Susceptible Prey
Y Infected Prey
Z Predator
r The intrinsic growth rate of prey
K The carrying capacity of the environment
a1 The half-saturation constant
α1 Predation rate of susceptible prey
b1 Predation rate of infected prey
c Conversion coefficient from the prey to predator

d1 The death rate of infected prey
d2 The death rate of predator population
λ The infection rate
H The catchability coefficient of the predator
E Harvesting effort

3. The Presence of Equilibrium Points

• The trivial equilibrium point E0(0, 0, 0).
• The diseased prey-free and predator-free equilibrium point E1(1, 0, 0).
• The predator-free equilibrium point E2(x̄, ȳ, 0),where

x̄ = d, ȳ = r(1−d)
r+1 .

• The infection-free equilibrium point E3(x̄, 0, z̄), where

x̄ = a(δ+h)
cα−δ−h , and z̄ = rac((cα−δ−h)−a(δ+h)

(cα−δ−h)2 .
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• The interior equilibrium point E∗(x∗, y∗, z∗),

where y∗ = a(a(δ+h)+((δ+h)−cα)s∗)
(cαs∗+(cθ−(δ+h)(a+s∗)) ,

z∗ = ac(s∗−d)(a+s∗)
(cαs∗+(cθ−(δ+h)(a+s∗)) ,

and s∗ is the unique positive root of the quadratic equation AS2 + BS + C = 0,
with A = r(cα + cθ − (δ + h)), B = (cθ − (δ + h))(−r + ar)− cαr + a(δ + h) + (δ +
h)− cα)r), C = −a((r(cθ − (δ + h) + (cαd− a(δ + h)(1 + r))).

4. Analyses of Local Stability

Now, we want to calculate the Jacobian matrix for local stability analysis around
different equilibrium points. The Jacobian matrix at an arbitrary point (x, y, z) is given by

J(E) =

 w11 w12 w13
w21 w22 w23
w31 w32 w33


where,

w11 =
r(1− 2x)

1 + f y
− y(

r
1 + f y

+ 1)− αaz
(a + x)2 , w12 = −x(

r
1 + f y

+ 1), w21 = y

w13 = − r f x(1− x− y)
(1 + f y)2 − αx

a + x
, w22 = x− d− aθz

(a + y)2 , w23 =
−θy

(a + y)
,

w31 =
acαz

(a + x)2 , w32 =
acθz

(a + y)2 , w33 = −δ +
cθy

a + y
+

αcx
a + x

− h.

Theorem 1. The trivial equilibrium point E0(0, 0, 0) is always unstable.

Proof. Now, the corresponding Jacobian matrix J(E0) at E0(0, 0, 0) is given by

J(E0) =

 r 0 0
0 −d 0
0 0 −h− δ


The corresponding eigenvalues are r, −d, −δ− h . One of the eigenvalues is positive.

So, the trivial equilibrium point is always unstable.

Theorem 2. The diseased prey-free and predator-free equilibrium point E1(1, 0, 0) is unstable.

Proof. The corresponding Jacobian matrix J(E1) at E1(1, 0, 0) is given by

J(E1) =

 −r −(r + 1) −α
a+1

0 −d + 1 0
0 0 −(δ + h) + cα

a+1


The corresponding eigenvalues are λ1 = −r,λ2 = −d + 1, and λ3 = −(δ + h) + cα

a+1 .
Hence, E1(1, 0, 0) is unstable due to the numerical simulations.

Theorem 3. The predator-free equilibrium point E2(x̄, ȳ, 0) is locally asymptotically stable if
(δ + h) > cαs̄

a+s̄ +
cθ ī
a+i .

Proof. The corresponding Jacobian matrix J(E2) at E2(x̄, ȳ, 0) is given by

J(E2) =

 f11 f12 f13
f21 f22 f23
f31 f32 f33


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where,

f11 = −rd, f12 = (−1− r)x̂, f13 = −r f x(1− x− y)− αx̂
a + x

,

f21 = y, f22 = 0, f23 =
−θŷ
a + ŷ

, f31 = 0, f32 = 0, f33 =
cαx̂

a + x̂
− δ +

cθŷ
a + y

− h.

The cubic characteristic equation of J(E2) is λ3 + Lλ2 + Mλ + N = 0, where,
L = − f11 − f33, M = − f21 f12 + f33 f11, N = f12 f21 f33. If L > 0, N > 0, and LM− N > 0,
According to the criterion of Routh–Hurwitz, the negative real parts are the root of the
above characteristic equation if and only if L, N and LM− N are positive. Hence, the E2 is
locally asymptotically stable.

Theorem 4. The infection-free equilibrium point E3(s̄, 0, p̄) is locally asymptotically stable if
a(δ+h)

cα−δ−h −
θ p̄
a < d

Proof.

J(E3) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33



a11 = r− 2ar(δ + h)
cα− δ− h

− (cα− δ− h)2 p̄
aαc2 , a12 = − a(1 + r)(δ + h)

cα− δ− h
,

a13 = − (δ + h)
c

, a21 = 0, a22 = −d +
a(δ + h)

cα− δ− h
− θ p̄

a
,

a31 =
(cα− δ− h)2 p̄

acα
, a32 =

cθ p̄
a

, a33 = 0.

The cubic characteristic equation of J(E3) is λ3 + Lλ2 + Mλ + N = 0, where,
L = −a11 − a33, M = −a21a12 + a33a11, N = a12a21a33. If L > 0, N > 0, and LM− N > 0,
according to the criterion of Routh–Hurwitz, the negative real parts are the root of the
above characteristic equation if and only if L, N and LM− N are positive. Hence, the E3 is
locally asymptotically stable.

Theorem 5. The interior equilibrium point E∗(x∗, y∗, z∗) is locally asymptotically stable
if L > 0, N > 0, and LM− N > 0

Proof. The corresponding Jacobian matrix at E∗(s∗, i∗, p∗) is given by

J(E∗) =

 l11 l12 l13
l21 l22 l23
l31 l32 l33

,

where,

l11 = − x ∗ (−r + ar + (1 + r)y∗ + 2rx∗)
a + x∗

, l12 = −x∗(r + 1), l13 = − αx∗

a + x∗
,

l21 = y∗, l22 =
aθz∗y2

(a + y∗)2 , l23 = − θy∗

(a + y)
, l31 =

acαz∗

(a + x∗)2 , l32 =
acθy∗

(a + x∗)2 , l33 = 0.

The cubic characteristic equation of J(E∗) is λ3 + Lλ2 + Mλ+ N = 0. Here L = −l11−
l33, M = −l21l12 + l22l11 − l13l31 + l23l32, N = l13(−l22l31 + l21l32) + l23(l12l31 − l11l32). If
L > 0, N > 0, and LM− N > 0. According to the criterion of Routh-Hurwitz, the negative
real parts are the root of the above characteristic equation if and only if L, N and LM− N
are positive. Hence, the interior equilibrium E∗ is locally asymptotically stable.
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5. Hopf Bifurcation Analysis

Theorem 6. If the critical value for the bifurcation parameter q1 is exceeded, the model (2) experi-
ences Hope-bifurcation. There exists the following Hopf bifurcation criteria at
q1 = q1 ∗ 1. A1(q1∗)A(q∗1)− A3(q∗1) = 0.

Proof. For h1 = q∗1 ,

(λ2(q∗1) + A2(q∗1))(λ(q
∗
1) + A1(q∗1)) = 0. (3)

=⇒ ±i
√

A2(q∗1) and −A1(q∗1) be the zeros of the above equation. The following transver-
sality requirement must be satisfied in order to achieve Hopf bifurcation at q1 = q1∗.

d
dq∗1

(Re(λ(q∗1)))| 6= 0.

The generic roots of the aforementioned equation are (3) for all q1.

λ1 = r(q1) + is(q1),

λ2 = r(q1)− is(q1),

λ3 = −A1(q1).

Now, we examine the situation. d
dq∗1

(Re(λ(q∗1)))| 6= 0.
Let λ1 = r(q1) + is(q1) in the (3), we obtain

A(q1) + iB(q1) = 0.

where,

A(q1) = r3(q1) + r2(q1)A1(q1)− 3r(q1)s2(q1)− s2(q1)A1V + A2(q1)r(q1) + A1(q1)A2(q1),

B(q1) = A2(q1)s(q1) + 2r(q1)s(q1)A1(q1) + 3r2(q1)s(q1) + s3(q1).

dA
dq1

= ς1(q1)r
′
(q1)− ς2(q1)s

′
(q1) + ς3(q1) = 0, (4)

dB
dq1

= ς2(q1)r
′
(q1) + ς1(q1)s

′
(q1) + ς4(q1) = 0, (5)

where,

ς1 = 3r2(q1) + 2r(q1)A1(q1)− 3s2(q1) + A2(q1),

ς2 = 6r(q1)s(q1) + 2s(q1)a1(q1),

ς3 = r2(q1)A
′
1(q1) + s2(q1)A

′
1(q1) + A

′
2(q1)r(q1),

ς4 = A
′
2(q1)s(q1) + 2r(q1)s(q1)A

′
1(q1).

By multiplying (4) by ς1(q1) and (5) by ς2(q1), respectively,

r(q1)
′
= − ς1(q1)ς3(q1) + ς2(q1)ς4(q1)

ς1
2(q1) + ς22(q1)

. (6)
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Substituting r(q1) = 0 and s(q1) =
√

A2(q1) at q1 = q∗1 on ς1(q1), ς2(q1), ς3(q1), and
ς4(q1), we obtain

ς1(q∗1) =− 2A2(q∗2),

ς2(q∗1) =2A1(q∗1)
√

A2(q∗1)

ς3(q∗1) =A
′
3(q
∗
1)− A2(q∗1)A

′
1(q
∗
1),

ς4(q∗1) =A
′
2(q
∗
1)
√

A2q∗1 .

Equation (6), implies

r
′
(q∗1) =

A
′
3(q
∗
1)− (A1(q∗1 A2(q∗1)))

2(A2(q∗1) + A2
1(q
∗
1))

, (7)

if A
′
3(q
∗
1)− (A1(q∗1)A2(q∗1))

′ 6= 0 =⇒ d
dq∗1

(Re(λ(q∗1)))| 6= 0, and λ3(q∗1) = −A1(q∗1) 6= 0.

A
′
3(q
∗
1)− (A1(q∗1)A2(q∗1))

′ 6= 0 is ensured if the transversality criterion holds, and, at this
point, the model (2) enters the Hopf bifurcation at q1 = q∗1 .

6. Numerical Simulations

In this section, several numerical simulations of the system (Equation (2)) are per-
formed in order to verify the theoretical findings. In the present study, the rate of harvesting
(h) and predation rate (α) are the key parameters, which will be taken as control parame-
ters. The MATLAB software programme is used to carry out the numerical simulation for
the provided set of parameter values.

Effect of Varying the Harvesting Rate h

For the given parametric values, as in Table 2 with α = 0.2, the without predator
equilibrium point E2 and the endemic equilibrium point E∗ exist for 0.1 < h < 0.32.
Figure 1 shows time series for the system (Equation (2)) for h = 0.08 and phase portrait of
the system at E∗. Figure 2 shows susceptible and infected and predator prey population
with different values for h = 0.01, 0.08, 0.2, 0.3. It can be observed that an increase in the
harvesting rate of susceptible prey leads to a decrease in the susceptible prey and predator
population, but an increase in the infected prey population.

Figure 1. Time series for the system (Equation (2)) for h = 0.08 and phase portrait of the system at E∗.
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Figure 2. Susceptible and infected and Predator prey population with different values for
h = 0.01, 0.08, 0.2, 0.3. It can be observed that an increase in the harvesting rate of susceptible prey
leads to a decrease in the susceptible prey and predator population, but an increase in the infected
prey population.

Table 2. Parametric values of the system (Equation (2)).

Parameters Indicative Number

β Variable
α Variable
h 0.1
a 0.2
d 0.6
r 0.3
δ 0.4
c 0.5
θ 0.7

7. Conclusions

In this study, we investigated the three-species food web model in an eco-epidemiological
model with predator harvesting. Local stability was assigned to each biologically feasible
equilibrium point of the system. Harvesting rate (h) was used as a control parameter.
According to the analytical and numerical findings, the harvesting rate has a major impact
on the population. Furthermore, increasing the susceptible prey harvesting rate leads to a
decrease in the susceptible prey and predator population, but an increase in the infected
prey population. If we increase the rate of harvesting in predator populations, the system
loses its stability. Also, as we increase the level of harvesting, the system loses its stability
and becomes unstable. This study shows the complex behavior of the proposed model.
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