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Abstract: The analytical modeling of thin-film, multilayered piezoelectric microcantilevers is pre-
sented in this work. Piezoelectric microcantilevers were used in chemical sensors. Different types
of probe coatings were applied to these types of microcantilevers. A position-sensitive sensor (PSS)
system was used to identify chemical ingredients in materials with high sensitivity, and external
voltage was measured in mV. The maximum voltage generated for the sensor was 39 mV. This range
of voltage is suitable for sensing electronic systems. The angle change in a microcantilever in a
liquid or gas environment identifies a material’s chemical ingredients. A microcantilever deflects,
resulting in varying voltages in the analysis of materials. COMSOL software and equations were used
for analytical simulations to determine the optimal design parameters. COMSOL software model
development and MEMS design were involved in the analytical simulations. This paper examines an
analytical model of the cantilever and discusses the fabrication process.

Keywords: MEMS; piezoelectric; MEMS; microcantilever; COMSOL modeling and simulation;
chemical sensors

1. Introduction

Thin-film, multilayered piezoelectric technology has made significant advances in
application in MEMS. A piezoelectric MEMS device can perform both sensor and actuator
functions. Piezoelectric sensors are highly sensitive, have a broad frequency response range,
require little power, are highly precise, and simplify instrumentation.

MEMS cantilevers with high sensitivity and aluminum nitride (AlN) as the piezo-
electric material have been exploited [1,2]. The mechanical properties of the piezoelectric
microcantilever described with the appropriate formula have been reported [3,4]. An
analysis of the relationship between the minimum measurable input force gradient and
the deflection of the piezoelectric microcantilevers was conducted using scan force mi-
croscopy [5,6]. A study of the electromechanical characteristics of piezoelectric sensors
has been conducted [7]. Researchers suggest a closed-loop control method to measure the
deflection of multilayered piezoelectric cantilevers [8,9]. Microcantilevers are coated with
antibodies (blue-green) that capture viruses (red spheres). As the cantilevers identify and
capture more virus molecules, one or more of the mechanical or electrical characteristics
of the cantilevers can change and be detected through an electronic interface. The size
of the particle being detected and captured is one of the factors affecting the size of the
cantilever. These antibodies are proteins produced in the blood in response to the presence
of an antigen (e.g., virus, bacteria, or toxin). Devices based on piezoelectric technology
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need to be modeled and designed analytically. COMSOL software was used here to model
and simulate a microcantilever piezoelectric sensor statically and dynamically. In this
paper, piezoelectric sensors are described, and their mechanical and electrical properties
are determined through analytical simulations.

2. Sensor Design and Modeling

A multilayered microcantilever was examined in this work using two methods for
determining its electromechanical parameters. First, a mathematical formulation was
employed to investigate the relationship between the surface pressure applied on the
microcantilever’s surface and its bending and displacement. Also, the displacement–
voltage relationship was established. Second, microcantilever simulations were performed
using COMSOL software. The cantilever was composed of molybdenum (Mo) as the top
and bottom electrodes, and a piezoelectric layer of aluminum nitride (AlN) was embedded
between them.

Then, the cantilever surface was coated. The sensor analyzes, measures, and ex-
poses liquids and gases’ molecular structure and atomic composition. Target analytes are
molecules and atoms that are used as measurements. Sensor surfaces are coated with
special coatings to attract analytes. When analytes and the coating on the sensor’s surface
react chemically, a chemical binding results in some analytes penetrating between the
atoms of the probe coating. Cantilever deflection results from surface pressure on the
cantilever caused by this penetration. Piezoelectric layers can be continuously measured to
reveal their chemical composition by measuring the angle and voltage. The side view and
materials used to construct the designed cantilever are shown in Figure 1.
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Figure 1. (a) Microcantilever simulated in the deformed position. (b) A side view of a microcantilever
that was designed.

Piezoelectric devices cause atoms in crystalline structures to move when force is
applied. Due to this displacement of atoms on the piezoelectric surface, the electrical charge
varies. Inversely, this process also results in atom displacement. When the polarity is
reversed, the moment applied to the microcantilever changes direction. The deflection of
the microcantilever happens when a chemical reaction occurs on its surface. The deflection
can be expressed as follows:

Z =
3(1 − v)L2

T2E
δs (1)

where v is the Poisson ratio, L is the length, δs is the differential surface stress, T is the
thickness, and E is Young’s modulus.

Assume that a thin piezoelectric layer is placed over a thick elastic material. There
is no electricity in the elastic material because it is in static equilibrium. The relationship
between the deflection of a cantilever’s tip and voltage can be expressed as follows.

Z = d31
3L2Ep

T2Ee
V (2)
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In the above equation, find V.

V =
T2Ee

3d31L2Ep
Z (3)

Assume that d31 represents the coefficient piezoelectric material and Ee and Ep repre-
sent the elastic piezoelectric material’s Young’s modulus. Substituting Equation (1) into
Equation (3) results in

V =
Ee(1 − V)

d31EpE
δs (4)

3. Simulation Setup and Parameters

COMSOL software is used for simulation modeling because it can model, simulate,
and design MEMS. When the simulation was performed on a cantilever, one end was
constrained while the other was free. Cantilevers were designated along their length in
the X direction. Additionally, the following conditions were applied: There was a static
equilibrium between every cantilever layer. Between layers of the cantilever, there was no
shear displacement. Each layer consisted of a solid rectangular shape with equal length
(L) and width (W). However, each layer differed in thickness. It was assumed in the
model that an average surface pressure δs was applied to it, and that the pressure was
distributed in the XY plane. Surface pressure was created on the sensor surface when
analytes reacted with its surface. Molecular force was exerted on the sensor’s surface in a
vertical Z direction under the slight pressure applied here. It measured the resultant voltage
generated by the piezoelectric devices. Piezoelectric behavior was determined based on
this voltage measurement and other information. Nonlinearities in the MEMS (micro-
electromechanical systems) cantilever beams are essential for improving their performance
and reliability. They can arise from various sources, including material properties, geometry,
and operating conditions. The specific approach depends on the nature of the nonlinearities,
their application, and the available resources. Here are some approaches to address
nonlinearities in MEMS cantilever beams: design optimization, material selection, pre-
stress control, operational parameters, feedback control, modeling and simulation, sensing
techniques, calibration and compensation, advanced control strategies, and experimental
validation. Table 1 shows the materials properties of the MEMS cantilever.

Table 1. MEMS cantilever layer descriptions with properties.

Material Thickness Poisson Ratio Density
[g/cm3]

Young’s Modulus
[GPa]

Relative
Permittivity

Molybdenum 200 nm (Top–Bottom) 0.29 10.1 315 1
Aluminum Nitride 1.5 µm 0.27 3.30 348 9

4. Results and Discussion

Piezoelectric cantilevers were constructed from solid three-dimensional elements.
These microcantilevers had a length of 100–600 µm, a width of 50 µm, and a thickness of
1.9 µm, respectively. Molecules on the piezoelectric surface applied force in the Z direction.
Due to the applied force, there was a deflection between 6 µm and 21 µm. Increasing the
length decreased the generated voltage, according to the simulation results. The maximum
electric potential was achieved at 39 mV with a 600 µm cantilever length, as shown in
Figure 2.
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vs. length.

The piezoelectric sensor was designed such that the voltage generated was on the scale
of mV. The voltages generated for the microcantilever were in the range of 11 to 39 mV. This
range of voltages is suitable for sensing electronic systems. An increase in the thickness
of the piezoelectric layer resulted in an increase in the generated voltage. This research
improves the design and performance of piezoelectric sensors by specifying the primary
design parameters for optimal sensor functionality.

5. Proposed Microfabrication Process

The materials used for sensor fabrication are described with their properties, including
the thin piezoelectric material layers, in Section 3. The fabrication process consisted
of different steps, including patterning the bottom metal electrodes (Figure 3a). The
piezoelectric layer and the top electrode were patterned in the second step, as shown in
Figure 3b. The MEMS cantilever was released from the substrate (Figure 3c). For releasing
the cantilever, an ICP etching of silicon with SF6 at very low temperatures and at very low
pressures was used to produce isotropic etch profiles of silicon, as shown in the figure,
which help the cantilever be released from the substrate. In total, 700 sscm of SF6, a coil
power of 2600 W, a and pressure of 100 mTorr at a temperature of 18 ◦C were applied for
the silicon etching. Figure 3 shows the entire flow process predicted for the fabrication of
the MEMS cantilevers.
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A chemical MEMS sensor works with a position sensing system (PSS), as shown in
Figure 4.
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6. Conclusions

The mechanical and electrical properties of a microcantilever were determined using
COMSOL software. Microcantilever chemical sensors based on thin-film multilayers
were analyzed analytically. A mathematical simulation of such sensors’ mechanical and
piezoelectric characteristics was completed, and the results generated correlate with those
obtained using the equations provided in this paper. As a result of the piezoelectric sensor’s
design, voltage was generated on the mV scale. The maximum voltage generated by a
sensor of length 600 µm with a displacement of 21 m was 39 mV. The voltage range obtained
can be used to detect electronic systems. The voltage generated by piezoelectric layers
increases with thickness. On the other hand, increased voltage decreases sensor sensitivity
and increases costs and losses. This research enhances piezoelectric sensor performance by
specifying primary design parameters.
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