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Abstract: The past decade has shown a growing awareness of the dangers of intentional interference
(especially jamming and spoofing) with GNSS signals. The Antiference project uses reconfigurable
digital signal processing methods in the detection, classification, and mitigation of interference by
employing machine learning techniques. The ML-based jamming classifier uses distinctive features
of spectrograms for the differentiation of various jamming attacks. A residual neural net is used
to map the spectrograms to the different jamming types. It relies on a fingerprinting architecture.
Fingerprints summarize the characteristics of all the incoming signals, which are stored in and
matched to a database of previously encountered interference types. To validate the implemented
functionalities, a developed test-bed runs test scenarios and benchmarks the results against two
state-of-the-art COTS receivers with interference mitigation capabilities.

Keywords: machine learning; jamming; spoofing; ResNet50; COTS receivers; interference detection
and mitigation

1. Introduction

The past decade has shown a growing awareness in the dangers of intentional interfer-
ence in the area of GNSS signals. Jamming and Spoofing (the two main intentional and
harmful radio frequency interference (RFI) types) have been receiving a lot of attention in
terms of the availability and affordability of hardware to induce the attacks, and the result-
ing costs to the victims. Jamming is the broadcasting of a radio frequency (RF) signal with
the goal of blocking the reception of authentic GNSS signals and it leads to the complete
blockage of the service or to the significant degradation of the service quality. Victims of
jamming usually know that they are experiencing a form of interference. However, newer
jamming methods, such as low-power jamming, code/spectrum-matching jamming (or
PRN jammers) [1], and systemic jamming [2] lead to the degradation or blocking of the
service without the victim being completely aware of what is happening.

Spoofing, on the other hand, is the targeted broadcasting of counterfeit GNSS signals
so that the victim receiver will perceive them as the authentic signals and follow the
counterfeit signals. In these types of attacks, the victim receivers are not aware of being
attacked and can be steered to unknown locations or be prone to accidents.

The Antiference project uses reconfigurable digital signal processing (DSP) methods
and tools in the detection, classification, characterization, and mitigation of harmful RFI.
While some forms of RFI signal mitigation do not rely on the detection and classification
of the RFI (like Notch filters or narrow correlators for multipath mitigation), effective
mitigation in most cases relies on knowing the parameters of the interfering signal and
can be significantly improved if accurate knowledge about the type and parameters of the
attack is known. Employing data-driven artificial intelligence (AI) and machine learning
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(ML) techniques to facilitate the detection and classification of RFI is the main focus of
this project. However, like many other defensive procedures, the recording and sharing of
previously encountered attacks (RFI incidents in this case) can save time in their detection
and classification and facilitate effective mitigation measures. Since ML models can suffer
from explicit knowledge representation and storing that can be shared between multiple
equipment (multiple instances of the same model), a fingerprinting (FP) architecture is
introduced to alleviate the possible shortcomings. The FPs of each incoming signal have
been generated and matched to a database that contains all the previously encountered
RFI types. This results in a database of fingerprints that can be shared between devices of
the possible RFIs. To test and validate the implemented functionalities, a testbed has been
developed that can run test scenarios and benchmark the results with state-of-the-art COTS
receivers which include RFI mitigation capabilities.

2. Background

The detection of interference has been a topic of research for a long time. Most of the
classical ways to detect jamming are based on signal processing or statistical techniques,
such as automatic gain control (AGC) monitoring, spectral monitoring, time-domain sta-
tistical analysis, and signal/carrier to noise ratio (CNR) monitoring. It is trickier to detect
spoofing, but the most common methods use Position/Velocity/Time (PVT) estimate
consistency checks, navigation data estimate consistency checks, the monitoring of AGC
for anomalies, the monitoring of multiple correlation peaks and distortions of the Auto-
correlation function (ACF), using additional equipment like inertial measurement units
(IMU) for position check, signal polarization, or multi-antenna arrays for directing ar-
rival detection.

Machine learning (ML)-based methods have also been explored to detect jamming
and spoofing signals. In some cases, they use similar features to the classical techniques as
a basis for the detection of interference. Some of the features used can be summarized as
Power Law Detector (PLD), such as the monitoring of AGC-gain values; Power Spectral
Density (PSD) Analysis, including methods such as the computation of Power Spectral
Density (PSD), filter banks, and wavelet Transformations; Probability Density Function
(PDF) Analysis, such as Kurtosis and the Gaussian White Noise test; Short Term Fourier
Transform (STFT) for the detection and classification of jamming; and Cyclo-stationary
analysis to detect spoofed conditions, such as pre-correlation Spectral Power Contents
Analysis (SPCA) [3].

Using the pre-processed data as features is only part of the solution; the other part
is the choice of model and its training and testing data and methods. Jamming detection
has been implemented successfully using Support Vector Machines (SVM) in [4–6], while
Neural networks (NN) such as Convolutional Neural Networks have been used in [7]. RFI
classification has used SVMs [8,9], Long Short-Term Memory (LSTM) has been used in [3],
and Convolutional Networks has been used in [8] with good results. Spoofing detection is
carried out using SVMs in [10,11], using NNs in [11,12], and using the LASSO technique
in [13]. Signal Characterization in the cognitive radio domain is carried out using different
NNs [14–18] and SVMs [19].

The mitigation of jamming is performed using multiple classical techniques depending
on the types of attack. The most used techniques can be summarized as the Bandpass
filter (for out-of-band interfering signals), the Notch Filter (NF) [20], the Adaptive Notch
Filter (ANF) [21,22], Frequency Domain Adaptive Filtering (FDAF), Pulse Blanking [20],
Wavelet-based methods (such as [23]), and Karhunen–Loeve-based methods [23].

3. Models

The Antiference system uses two NN models for the detection and classification
of different RFI types. One model is concerned with the detection and classification of
different jammer types, and the other detects the existence of spoofing signals. Figure 1
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shows the two models used for jamming detection and classification (left) and spoofing
detection (right).
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Figure 1. Detection and classification models used in Antiference for jamming (left) and spoof-
ing (right).

Different features were used for the detection of jamming and spoofing. This implied
that separate models would need to be used (otherwise the models would either not be
efficient or their size would increase dramatically), which, in turn, also led to having two
different FPs and FP databases. The FP of the incoming signals will be created and matched
against the FP database for each model separately. If no matches are found, the needed
features are extracted from the signal and sent for detection and classification through the
NN. The results will be both inserted in the FP database and also sent to the mitigation unit
for parameter extraction and mitigation of the signal.

The jamming detection/classification NN is built using transfer learning. It is illus-
trated in Figure 1, and is composed of two parts: (i) In green: this part extracts features
from the spectrograms. Its main component is a pre-trained 50 layers ResNet architecture
(see [24] for details about this type of architecture), available through the Keras toolbox
(see [25]). The final pooling layer is used to reduce the dimension of the feature map
between this step and the decision layer. This reduces the required computations down
the network while acting as a “summary” of the most prominent features. In addition,
a dropout layer is inserted between the extracted features and the rest of the network to
ensure the robustness of the training. (ii) In blue: features are processed by the decision
layer, using a fully connected (FC) decision layer. This layer combines the features extracted
by the ResNet50 with additional information (the kurtosis and AGC value of the sample).

The ResNet50 V2 architecture was selected by comparing the training speed and
classification performance of several architectures commonly used for transfer learning
on a subset of the available training data. It is the one that showed the best compromise
between the complexity of training and a good prediction of all the classes.

In addition, the parameters of this architecture and of the training process were tuned
to enable the highest performance, using a process of Bayesian optimization (see [26,27] for
an overview of the tool used to perform the optimization).

4. Data

Since ML-based models require a large number of samples for proper training and
assessments, and based on the automotive standards that were used as the basis for
assessments of the results, it was decided that the data used for training the model and
final validation will use both recordings and simulations to fulfil the requirements.

To do so, three types of data were used: (i) Purely simulated data used for the simu-
lation of all spoofing and PRN jamming datasets; (ii) Recorded base GNSS signal + sim-
ulated RFI used for all jamming types other than code/spectrum-matched jammers; and
(iii) Recorded signals containing both GNSS + RFI used only for our final validation tests.

It should be noted that the broadcasting of jamming and/or spoofing signals is illegal.
All the broadcasting and subsequent recordings of RFI in the real field was carried out
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on a military training ground in Austria by OHB Digital Solutions GmbH under a special
permit. The difficulty in recording these datasets and their subsequent scarcity is the
reason they were used for our final validation. To record the required signals, two data-
collection campaigns were performed: firstly, Real-field RFI recordings, collected on the
military training ground in Austria within a period of two days. The recordings consist of a
collection of jamming and spoofing datasets in static and dynamic conditions. The recorded
jammers were five COTS jammers, and broadcasted simulated jamming signals using an IZT
S1000 signal generator with a connected power amplifier and transmit antenna. Secondly,
Base (clean) GNSS signal recordings collected in the city of Graz and its surrounding areas
in Austria. Twelve datasets containing around 8 h of recording in different urban and
suburban environments from a car were collected.

Training and Test Data Preparation

To prepare the training data, the first eleven routes from Graz recordings were com-
bined with simulated jamming signals. A few hundred jamming signals were created using
different parameters, and combined with chunks of 10 ms of the recorded (base) GNSS
signals. The signal combinations were mix-and-match to remove bias in the learning results
of the model.

All the real-field RFI recordings, route 12 of the drive-throughs in the city of Graz, and
a selection of purely simulated data were used for final validation.

5. Antiference Testbed

The testbed is designed and configured to facilitate the verification and validation
of the Antiference system as well as for the benchmarking of the results in relation to the
two COTS receivers which have state-of-the-art RFI mitigation techniques implemented in
them. Figure 2 shows the Antiference testbed architecture. As can be seen in the image, the
COTS receivers can be used to process the incoming signals with or without their internal
mitigation mechanisms tuned on, or to process the mitigated signal using the Antiference
signal. The testbed has the following sections:
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Signal simulator: The signal simulator can be used for the simulation of clean, clean
and RFI, or only RFI signals in the GNSS frequency bands. In this project, OHB’s GNSS
simulator XPLORA was used for the simulation of all simulated signals. Analogue signals
recorded through the GNSS antenna can be directly fed into the COTS receivers (to be
directly processed by them) or be converted to digital signals to be fed into the Antiference
system. Antiference only works in the digital domain. Analogue to Digital Convertor
(ADC): in this project, a GNSS frontend based on a 8-bit ADC was used (TeleOrbit MGSE).
Two COTS receivers are used for the benchmarking of the results: (1) a low-cost receiver
(Rec01) and (2) a mid-range receiver (Rec02) suitable for the automotive domain. SDR
(software defined receiver): OHB Digital Solutions’ GNSS SDR was used in this project,
to process the results of the Antiference, and verify if any residual RFI could be detected
using the built-in RFI detectors. Digital to Analogue Convertor (DAC): For the conversion
of digital to analogue signals, the built-in convertor in TeleOrbits’ MGSE (Multi-GNSS
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Simulation and Test Environment) was used for the broadcasting of digital signals for
processing using the COTS receivers. The logging manager (or the collection of logs created
by each of the elements): to be stored for analysis, signal by signal or in batches. Analysis
tools: developed in MATLAB, these are used to analyze the results for the final validation
and assessment of the performance

6. Test and Validation Results

We have seen good detection capabilities for both jamming and spoofing. The classi-
fication of individual signal chunks has yielded good results, and has proven to provide
useful information for the mitigation stage. Table 1 summarizes some of the results.

Table 1. Detection accuracy of the Antiference system.

Datasets AM FM SCW CW AGW

False Alarm Rate 0.001 0.002 0.002 0.0 0.002

Detection Accuracy 1.0 1.0 0.9 1.0 0.952

Having knowledge of the specifics of a jamming attack can lead to better mitigation,
as was demonstrated in the validation phases. The effectiveness of the mitigation method
has not been fully demonstrated yet in the user domain; although Antiference does filter
jamming signals effectively and shows significantly improved C/N0 values for medium-
to high-power jammers, the resulting improvement in the PVT-domain has not been con-
vincingly demonstrated. The main reason for the shortcomings comes from the limitations
in the digital domain, as the mitigation/filtering was performed only on the digitized
signals, where the degradations of the RFI cannot be fully recovered. In a future evolution,
the overall mitigation performance in the user domain can be improved by applying the
mitigation directly at the receiver level.

Antiference has been used in combination with two COTS receivers and has been
compared to Rec02′s internal RFI suppression. As the Rec01′s internal RFI mitigation
cannot be turned off, Antiference can only be used in combination with it and not compared
with it in isolation. The relative performances differ for the different interference types.
Antiference performance is typically comparable to that of Rec02, while, in some cases, it is
clearly somewhat better or somewhat worse than Rec02. Further optimization is expected
to further improve the Antiference performance, but, for example, for FM interference, it
already performs remarkably well, as shown in Figure 3 It is, however, hard to distinguish
FM and AM interferers; however, due to the identical mitigation strategy, this does not
impact performance negatively (see Figure 4).
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Figure 4. Antiference RFI classification outputs for the first recording from Figure 4. FM interference
is hard to distinguish from AM interference and is sometimes mistaken for CW interference. As the
mitigation of these types of interference is the same, this does not impact mitigation performance.

In addition, we have looked at the outcomes of the Antiference Logs that provide
data on the internal workings of the module, particularly in relation to the false-detection
rates. The Antiference algorithms turned out to be highly sensitive, as they effectively
detect low-power CW and SCW (chirp) interferences close to 100% of the time. This is not
necessarily desirable, as the detection of such low-impact interferences is not needed and
comes at the expense of higher-than-needed false-detection rates and lower quality signal
due to the removal of some of the signal because of filtering. A simple remedy is the use
of a simple majority voting scheme over multiple subsequent RFI classifications. This has
been shown to reduce the false detection rates effectively, but at the expense of an increased
time-to-detection.

7. Discussion

The Antiference project has been a challenging project. Below, we summarize some of
the most important lessons learned.

The detection and classification model has been successful and performs well. How-
ever, the system is very sensitive, and picks up very low-power RFI and small perturbations
from the environment as well. This has led to a lack of distinguishing between harmless
and dangerous RFI. The detection of RFI is made based on small, 10 ms chunks of data.
While this solves the problem of detecting pulsed RFI, for the most part, and assures short
detection delays, it also leads to some false negatives/positives as 100 detections and
classification decisions are made every second. There are many ways this problem can
be addressed, such as looking at a window of detections and employing majority voting,
or having a secondary model in place that decides on the detection/classification results
based on the detection–result streams.

Antiference focused on ML-based methods for the detection and classification model
and the fingerprint database. However, the estimation of filter parameters can also be
delegated to ML models and might lead to improvements in performance.

There is no standardized way to inform the user of the existence or detected type of
RFI. Further developments are needed for meaningful interfacing with GNSS receivers and
their operators.

The proper training of ML models requires a massive amount of data. Unfortunately,
currently there are not enough free or publicly available recorded datasets that can be
used for the training of models. This led to recording campaigns internally, in addition
to processing and labelling the data samples manually. However, the amount of data
was insufficient for training the models to perform the interference mitigation. In our
view, a significantly increased number of GNSS datasets (both clean and containing RFI) is
needed for the future widespread development of ML-based RFI detection, classification,
and mitigation.
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Digital data were used for the training and testing of models. While this was appro-
priate for detection and classification, the integration of mitigation could not be carried out
in this domain. It should be noted that the effective mitigation (that can lead to increased
CN/0 in all cases) requires the real-time mitigation of signals in the analogue domain and
the inclusion of the effects in the loop. It was suspected that the Antiference system would
not be functional in real-time, so the decision was made to keep all processing (barring
the COTS receivers) in the digital domain to reduce complexity and keep tests realistic.
Until more performant detection and classification models are developed, this will remain
a shortcoming of the system.

8. Conclusions

The Antiference project succeeded in the implementation of a prototype, showing
the high potential of the application of ML methods to RFI detection and classification.
Significant improvements are still needed for the commercialization of such a system. It
was convincingly demonstrated that the usage of signal fingerprints and a fingerprint
database is feasible and beneficial in documenting the history and streamlining of the
performance for subsequent encounters with the same source of RFI.

While the system model developed during the project was a local model, the extended
of the general architecture to a cloud-based system can be envisioned, where the detection,
classification, and RFI characterization can be carried out remotely on the equipment.
The design of very small fingerprints and detection/classification features that can be
communicated easily via networks facilitates this approach.

On the other hand, having fingerprints that are explicitly readable by humans facili-
tates the combination and sharing of databases between equipment. This can result in a
better understanding of the growing threats that affect all GNSS receivers in terms of their
daily performance and a better cataloguing of the types and frequency of occurrence of
different types of RFI.
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