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Abstract: This paper develops an algorithm to compute optimal routes for an autonomous compost
turner. In commercial composting, the material to be composted is piled up in large heaps called
windrows and turned regularly by compost turners. The environment at the composting site is constantly
changing, as the locations of the windrows change with each turning procedure. Therefore, we propose a
novel method that automatically computes routes on a composting plant from LiDAR data. The LiDAR
is mounted on the compost turner together with a dual-antenna GNSS receiver, an IMU, and rotary
encoders. An extended Kalman filter is used to obtain the vehicle’s pose. Through direct georeferencing,
a global point cloud is obtained. The routing algorithm crops, segments, and filters the point cloud
until the points along the ridge of each windrow remain. These points are used to compute the optimal
routes along each windrow. Furthermore, a user can select the windrows which need to be turned and
the algorithm then computes the most efficient path for the compost turner, which also includes the
passages between the windrows. The method was tested within a simulation environment using a 3D
model of the composting site. The results show that the algorithm detects the windrows and computes
the routes with sufficient accuracy for autonomous compost turning.

Keywords: mobile mapping; routing; point cloud processing; LiDAR; simulation; digital twin; 3D
model; autonomous agriculture; multi-sensor fusion; Kalman filtering

1. Introduction

In 2020, the European Commission introduced a circular economy action plan [1] as
part of its European Green Deal. Within the Waste Framework Directive [2], it specified
the target that by the year 2035, a minimum of 65% of municipal waste should be reused
or recycled. As bio-waste amounts to 34% of all municipal waste [3], recycling bio-waste
plays a key role in meeting the EU’s recycling targets.

The most common recycling techniques for bio-waste are composting and anaerobic
digestion. According to [4], over 90% of the bio-waste that is separately collected in Europe
is composted. Therefore, composting can be considered the most important bio-waste
recycling technique in Europe.

In composting, the organic material is turned into compost, a biochemically stable
product containing microorganisms that can improve soil properties, such as organic matter
content, water retention capacity, and pH buffer capacity [3].

The most common method of commercial composting is windrow composting, where
the organic material is stacked into long heaps that are turned mechanically by compost
turners to promote aerobic microbial activity, moisture release, heat removal, and aeration.
However, the job of turning windrows is monotonous and the operator of a compost turner
is exposed to high temperatures, water vapor, and gases. Therefore, it is desirable to
develop autonomous compost turners.
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In recent years, a research team at Graz University of Technology has focused on the
development of a navigation module for autonomous compost turners. A concept for an
automatic steering system was first presented in [5]. In [6], tests are conducted to select
a suitable set of navigation sensors. Two different multi-sensor fusion architectures for
fusing GNSS, IMU, wheel odometry, and stereo camera are presented and evaluated in [7].
Ref. [8] presents an odometry model specifically tailored to tracked compost turners that
allows for bridging GNSS outages. In [9], a real-time positioning module to estimate the
position, velocity, and attitude of a compost turner is developed and tested in an automatic
steering system at a composting plant.

In [10], a concept for autonomous compost plant management is proposed. An
autonomous plant management not only requires an automatic steering system that steers
the compost turner through a single windrow, but requires more complex maneuvers
such as turning and driving from one windrow to the next. To achieve these tasks in an
automated manner, a complex routing algorithm is required. However, no study has yet
focused on routing algorithms for autonomous compost turners. This is exactly where
this paper comes in: it develops an algorithm to compute optimal routes from a mobile
mapping system mounted on the compost turner.

A major challenge for developing routing algorithms for a composting plant is the
constantly changing environment, as the locations of the windrows change with each
turning procedure. Therefore, we propose a novel method that automatically computes
routes on a composting plant from LiDAR data. In this paper, the concept is presented and
tested within a simulated composting plant environment.

Figure 1 shows an overview of the simulated composting plant where several windrows
can be seen. The aim of the routing algorithm is to first detect each separate windrow (cyan)
in an initialization phase. Afterward, an operator can specify which windrows shall be
turned before the compost turner computes an optimal route (orange) through them.

Figure 1. Composting plant in the simulation environment: The routing algorithm first computes
the optimal path through each windrow (cyan) and then the final path along which the autonomous
compost turner is steered (orange).

Path planning in environments that are observed with a LiDAR scanner is a common
task in mobile robotics. For planning global paths, commonly used algorithms are the A*
algorithm, which was first published in [11] and then constantly improved (e.g.: [12–14]),
and the Dijkstra algorithm [15]. For high-level planning that considers the robot configura-
tion, a local path planner is used. Examples of such local planners are the Dynamic Window
Approach algorithm [16] and the Timed Elastic Band (TEB) algorithm [17]. All planners,
global and local, use cost maps to define the traversability of different areas within the map.

This paper uses the Dijkstra algorithm as a global and the TEB algorithm as a lo-
cal planner. However, the main difference to conventional routing applications is that
windrows, which would be classified as obstacles by conventional algorithms, are in our
case traversable and part of the desired route. This means that each cluster of points within
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the point cloud that represents such a windrow must not be classified as an obstacle but
must be processed to determine the optimal route through it. To the authors’ knowledge,
no similar system has yet been developed.

2. Materials and Methods

This chapter describes the steps of the routing algorithm and its validation in the
simulation environment. Section 2.1 gives an overview of the developed software and the
used software packages. Section 2.2 outlines how the global point cloud of the composting
plant is obtained from LiDAR data. Section 2.3 describes how the global point cloud is
segmented into individual windrow point cloud clusters. Note that point cloud clusters
will be referred to as clusters throughout this paper. Section 2.4 explains how the individual
routes through each windrow cluster are calculated and Section 2.5 outlines how the
final route for the compost turner is computed using input from an operator. Section 2.6
describes the simulation environment that is used to validate the developed algorithm.

2.1. Software Development

The software for the routing algorithm is developed in C++. For the point cloud
processing operations, the openly available Point Cloud Library [18] is used. The Robot
Operating System (ROS) [19] provides the appropriate framework for the development
of the robotic application. The ROS navigation stack offers the 2D navigation capabilities
needed for route planning and following.

2.2. Obtaining the Global Point Cloud from the Windrow Area

In the first step, an up-to-date global point cloud of the composting plant must be
generated. This cloud is acquired in an initialization phase where the compost turner is
steered manually around the windrows at the composting plant. For this task, a simulated
Velodyne Ultra Puck LiDAR scanner was used. Given the scanner’s limited vertical field of
view of 40°, it is mounted on top of the compost turner with a forward tilt of 15° to better
cover the area in front of the machine.

The full procedure to incrementally build the global point cloud in the initialization
phase is shown in Figure 2. Each incoming LiDAR point cloud must first be georeferenced
to be in the same coordinate frame as the global point cloud. This is achieved through
direct georeferencing using the position and attitude results (Robot Pose) from a previously
developed Error State Kalman Filter (ESKF). The filter fuses the odometry data of the
compost turner with data from an Inertial Measurement Unit (IMU) and a Real-Time
Kinematic (RTK) dual antenna Global Navigation and Satellite System (GNSS) receiver
to calculate the state vector of the robot in real-time. For a detailed description of the
positioning module, the reader is referred to [9].

To keep the size of the global point cloud as small as possible in order to reduce
computational load, several further operations are performed:

• Windrow Area Filter: The windrows are always located within the same area on
the composting plant. Therefore, the extent of this area is defined using a confining
polygon (Windrow Area Polygon) created from known 2D coordinates. All points
outside this polygon are simply filtered out during the initialization.

• Local Box Filter: Points are only added to the global point cloud when they are within
a certain vertical range from the ground and within a certain horizontal distance from
the LiDAR. The vertical range ensures that ground points are removed. The horizontal
distance ensures that points that are further away from the LiDAR—and, therefore,
have a lower accuracy—are not included.

• Downsampling: The constant addition of the current LiDAR point cloud to the global
cloud leads to areas that have a very high point density. In a downsampling step, the
total amount of points can be reduced, especially in these dense areas, by making sure
that only one point is kept within a specified Downsampling Radius.
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After the initialization phase, the Global Windrow Point Cloud contains all points that
belong to windrows and provides the basis for extracting the individual windrow clusters.

Velodyne
Point Cloud

Apply Windrow
Area Filter

Windrow Area
Polygon

Local Box Apply Local
Box Filter

Global Windrow
Point Cloud

Initialization Phase

Georeferencing of
Point Cloud

Robot Pose

Downsample
Global Point Cloud

Downsampling Radius

Figure 2. Incremental procedure to build the global windrow cloud during an initialization phase.

2.3. Extraction of the Windrow Clusters

From the Global Windrow Point Cloud, the individual windrow clusters can now be
extracted. An overview of the clustering process is given in Figure 3. In the first step, an
outlier removal using Random Sample Consensus (RANSAC) is performed, since outliers
can negatively influence the clustering result. Therefore, RANSAC with a planar model is
used to estimate the best-fitting plane through all points. Points further than a specified
Distance Threshold away from this plane, i.e., the outlier points, are removed.

Global Windrow
Point Cloud

Remove z-Outliers
using RANSAC 
with Plane Model

RANSAC Distance Threshold Plane

Perform Cluster
Detection

Clustering Distance Tolerance

Min. Number of Points in Cluster

Max. Number of Points in Cluster

Windrow
Clusters

Figure 3. Filtering and clustering of the global point cloud.

After the outlier removal, the clustering is done using Euclidean Clustering provided
by the Point Cloud Library (PCL). The Clustering Distance Tolerance parameter specifies the
maximum distance between points to be considered part of the same cluster. Additionally,
the cluster size limits (minimum and maximum number of points within a single cluster) can
be set. These parameters depend on the density of the point cloud. If the Downsampling
Radius (see Section 2.2) is large, a larger Clustering Distance Tolerance and lower cluster size
limits are necessary, and vice versa. The resulting clusters each represent one windrow.

2.4. Finding the Optimal Route through each Windrow Cluster

In the next step, each Windrow Cluster is analyzed and processed to find the optimal
route for the compost turner through the windrow. The optimal route follows the ridge of
each windrow and thus requires the extraction of the ridge points from the Windrow Cluster.
A simple line is estimated, as it guarantees a relatively straight windrow after the compost
turner finishes moving through the windrow. In Figure 4, the full process of finding this
optimal line through each windrow is outlined. The individual steps are explained in
the following.
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Windrow
Clusters

Windrow Lines

For each Windrow Cluster:

RANSAC Distance Threshold Line 1

Windrow
Cluster

Subtract projected
 from original
 z-coordinates

Projected
Cluster

Perform RANSAC
with Line Model

Project Points
to RANSAC Line

Extract highest
points

Keep Percentage

Windrow Ridge
Cluster

Perform RANSAC
with Line Model

RANSAC Distance Threshold Line 2

Line 2 Coefficients

Create and add
 Line Segment to
Windrow Lines

XY of first and last
point on line

Filtered
Cluster

Line 1 Coefficients

Figure 4. Overview of the processing steps needed to obtain the optimal route through a
Windrow Cluster.

First, a RANSAC line-fitting algorithm is used to obtain the Line Coefficients for the
best-fitting line through the cluster points and to further eliminate outliers (Filtered Cluster).
Projecting the Windrow Cluster to the RANSAC line (Projected Cluster) assigns every point i
a corresponding z-coordinate on the line (zi

line). Then, zi
line is subtracted from the original

z-coordinate, zi
original , of the point:

zi
rel = zi

original − zi
line. (1)

This is performed for all n points. The resulting set Zrel = {zi
rel}

n
i=1 = {z1

rel , z2
rel , . . . , zn

rel},
which represents the z-coordinates of the points with respect to the line, is distributed around
zero. From this set, the points with the highest z-coordinates relative to the line can be extracted.
The Keep Percentage parameter specifies the percentage of points extracted. These points then
represent the ridge of the windrow (Windrow Ridge Cluster).

Finally, a second RANSAC line-fitting algorithm can be applied to obtain the coeffi-
cients for the optimal line through the Windrow Ridge Cluster. From the Projected Cluster,
the first and last points on the line are extracted. These points are used together with
the Line Coefficients from the second RANSAC to obtain the start and endpoints of a line
segment—the optimal route through the windrow.

2.5. Route Planning Algorithm for the Compost Turner

After determining the optimal route through each windrow (Windrow Lines), the
routing algorithm for the global path at the composting plant can be developed. The aim is
to find a route through user-selected windrows, which takes maneuvers on the composting
plant into account. Such maneuvers include moving from the end of one windrow to the
start of another windrow or moving to a specified target with a desired final orientation
(e.g., to the charging station).
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A user can select which windrows should be turned by the autonomous compost
turner. The full route consists of a list of waypoints. One windrow is stored as two separate
waypoints, i.e., the start and endpoints of the Windrow Line. Depending on which point is
closer to the compost turner, the start and endpoints of the estimated route through the
windrow can be switched around.

When starting the algorithm, the first stored waypoint is passed to the route plan-
ner. The route is planned with the ROS navigation stack, specifically with the move_base
package which incorporates a global and a local planner. For the global path planning, the
global_planner package, which contains the Dijkstra algorithm, was used. Local planning
was integrated using the teb_local_planner plugin [20], which is based on the timed elastic
band (TEB) method. The planner then computes the optimal route to the waypoint and
outputs linear and angular velocity commands to the control module of the robot. This is
repeated until the last waypoint is successfully reached.

2.6. Simulation Environment

The developed routing algorithm is tested and evaluated within Gazebo. Gazebo is a
simulation environment that allows for ROS integration. Several plugins exist that enable
the simulation of navigation sensors such as GNSS receivers, IMUs, or LiDARs. Within
Gazebo, the compost turner is simulated and can be steered manually using a controller.
Outputs from a differential drive controller are used and translated to steering commands
for the robot.

The environment of the composting plant is simulated from a mesh file. This 3D
model was created using data from UAV photogrammetry. The environment contains an
area of approximately 50 by 70 m. In total, there are 16 windrows, each with a width of
approximately 3 m and a height of 1.5 m. The windrows are 40 m long, except for the last
two, which are only 15 m long. To properly test the windrow detection algorithm that
estimates the optimal routes through each windrow, several tests were conducted within
the simulation environment (see Section 3).

3. Results

This chapter presents the results of the validation of the routing algorithm in the simu-
lation environment. First, the processing steps for detecting a single windrow are visualized,
and then the results for multiple initialization rounds are presented and compared.

3.1. Detection Results for a Single Windrow

Figure 5 shows the result of the windrow detection algorithm for a single windrow.
The simulated windrow (A) is observed in the initialization phase as a point cloud (B).
Then the ridge points of the windrow are extracted (C). Finally, a line is estimated through
the ridge points (D), from which the start and endpoints of the windrow can be derived as
a result.

Figure 5. Visualization of the processing steps for detecting a single windrow. Simulated windrow (A);
Windrow after initialization (B); Extracted ridge points (C); Estimated line through ridge points (D).
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3.2. Detection Results for Multiple Initialization Rounds

To validate the windrow detection, three sets of ten individual initialization runs were
executed in the simulation environment. The three sets differ regarding the input settings
(see Table 1). The Downsampling Radius was varied from 0.10 m (Set A) to 0.30 m (Set C),
which also has an effect on the other parameters for the cluster detection (see Section 2.3).

Table 1. Windrow detection settings for the different test sets.

Setting Set A Set B Set C

Downsampling Radius 0.10 m 0.20 m 0.30 m

Clustering Distance Tolerance 0.15 m 0.30 m 0.45 m

Min. Number of Points in Cluster 1000 500 300

Max. Number of Points in Cluster 100,000 50,000 30,000

Local Crop Box:
Horizontal Distance from LiDAR 25 m
Vertical Range above Ground 0.9–1.8 m

RANSAC Distance Thresholds:
Plane 0.5 m
Line 1 0.7 m
Line 2 0.5 m

Ridge Points—Keep Percentage 40%

Each initialization run was performed manually by steering the compost turner around
the windrows of the simulated composting plant, meaning the routes are always similar
but never exactly the same. Each time, all 16 windrows were successfully detected. To
validate the results numerically, the estimated start and endpoints as well as the orientation
of each windrow were compared. Since each windrow is detected ten times, the standard
deviation of the distance from the mean start and endpoint is given in Table 2. Keep in
mind that these results show the quality of the detected Windrow Lines compared to one
another and not to an actual reference position of the windrow.

Table 2. Windrow detection results for the three different test sets.

Set A Set B Set C
Standard Deviations Standard Deviations Standard Deviations

ID Points
(2D) [m]

Orientation
[°]

Points
(2D) [m]

Orientation
[°]

Points
(2D) [m]

Orientation
[°]

1 0.10 0.43 0.07 0.41 0.16 0.41
2 0.05 0.16 0.15 0.35 0.11 0.34
3 0.08 0.29 0.09 0.25 0.16 0.39
4 0.06 0.15 0.06 0.18 0.12 0.35
5 0.07 0.36 0.10 0.28 0.11 0.13
6 0.06 0.28 0.12 0.28 0.13 0.50
7 0.09 0.18 0.08 0.26 0.08 0.14
8 0.10 0.08 0.13 0.23 0.11 0.29
9 0.07 0.24 0.08 0.12 0.13 0.36

10 0.08 0.20 0.11 0.31 0.14 0.43
11 0.06 0.11 0.04 0.14 0.10 0.12
12 0.05 0.16 0.08 0.43 0.10 0.32
13 0.07 0.15 0.10 0.27 0.09 0.11
14 0.04 0.07 0.08 0.22 0.16 0.26
15 0.09 0.38 0.11 0.62 0.10 1.03
16 0.10 1.13 0.09 0.90 0.11 1.45

Average 0.07 0.27 0.09 0.33 0.12 0.41
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The results show that a higher Downsampling Radius increases the standard deviations.
On average, the standard deviations for Set A of the estimated start and endpoints was
0.07 m and the average standard deviation of the orientation was 0.27°. They increase to
0.12 m and 0.41° when looking at the results of Set C. However, the results for Set C are still
sufficiently accurate to navigate the compost turner to the start of a windrow. Additionally,
increasing the Downsampling Radius (Set C) reduces the size of the point cloud by a factor of
8. This minimizes the computational load and can reduce the hardware requirements for
the mobile processing unit of the compost turner.

The last two windrows (IDs 15 and 16) are shorter than the other windrows. Since the
orientation is computed from the start and endpoints, the shorter distance between these
points explains the larger standard deviation.

4. Discussion

This paper presented a route planning module for an autonomous compost turner.
The module automatically detects the windrows on the composting plant in an initializa-
tion phase using LiDAR. This is achieved by first generating a global point cloud of the
windrows from which the individual windrow clusters are extracted. Then the ridge points
of each windrow cluster are retrieved and an optimal route through them is estimated. The
routes through each windrow are then incorporated into a global route planning algorithm.
Via user input, the windrows that the robot should turn can be selected and the optimal
route to, through, and between the selected windrows can be calculated. The algorithm
was tested in a simulation environment.

Tests have shown that the algorithm reliably manages to detect all windrows after
the initialization phase. The start and endpoints of each route through a windrow were
detected with a standard deviation of less than 0.15 m, while the orientation of each route
through the windrow was estimated with a standard deviation of less than 0.5°. Therefore,
this algorithm is suitable for the estimation of the windrow start and endpoints.

Future research will focus on the evaluation of the method using real-world data,
including tests at a real composting plant. Currently, an obstacle detection and avoidance
module as well as a precise local approach strategy to the windrows are being developed.

On the path toward smart compost plant management, autonomous compost turners
play an important role. When equipped with additional sensors, they can be used to
georeference and monitor temperatures and greenhouse gas emissions. This can help
to ensure quality control. Furthermore, autonomous compost turners allow increasing
efficiency at the composting site.
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Abbreviations
The following abbreviations are used in this manuscript:

ESKF Error State Kalman Filter
GNSS Global Navigation and Satellite System
IMU Inertial Measurement Unit
LiDAR Light Detection and Ranging
PCL Point Cloud Library
RANSAC Random Sample Consensus
ROS Robot Operating System
RTK Real-Time Kinematic
TEB Timed Elastic Band
UAV Unmanned Aerial Vehicle
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