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Abstract: Precise Point Positioning (PPP) with Integer Ambiguity Resolution (IAR) is an effective way
of improving the overall performance of the PPP technique both in terms of convergence time and
accuracy. Even though PPP-IAR has seen a tremendous development in the last two decades, there is
still room for improvement. Specifically, the search stage of candidate carrier phase ambiguities is
characterized as an NP-hard problem that requires a long processing time, leading to limitation in the
reliability of the identified optimal solution. A field that would have an impact on the search process of
carrier phase ambiguities, and is addressed conceptually in this paper, is Artificial Intelligence (AI).
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1. Introduction

Precise Point Positioning (PPP) is a GNSS technique employed for obtaining a high-
accuracy positioning solution using minimal infrastructure and data corrections [1]. Never-
theless, a major drawback of the method is the long convergence time that for the single
constellation case is of an order of 30 min [2]. There are many ways to reduce this time,
albeit upon circumstances most of them are deemed cost-inefficient [2]. Among them, a
prominent approach resides on Integer Ambiguity Resolution (IAR), which is proven to
reduce the convergence time and improve the accuracy of the estimated solution [3]. If
the ambiguities are resolved correctly to their integer counterparts, then the carrier phase
measurements can be used as precise pseudoranges.

A variety of applications including road ITS (Intelligent Transportation Systems)
could benefit from PPP-IAR even if they do not ask for cm level accuracy. Specifically,
applications for which the PPP-IAR is exercised, in general can attain robustness and
reliability in the estimated solution, leading to a high integrity performance [3]. Moreover,
in [4], the impact of PPP-IAR was investigated in urban- and deep-urban environments
where satellite obstruction occurs more frequently. The analysis determined that employing
dual frequency PPP-IAR can yield better solutions than PPP float solutions for which
more satellites and/or constellations are enabled. This suggests that processing an ever-
increasing number of satellites might not be the answer in order to substantially improve
the PPP performance.

Considering the importance of PPP-IAR, a great number of variations in the technique
have been proposed and tested since early 2000. Representations of a PPP-IAR range from
the Single-Constellation, Dual-Frequency models of Linear Combinations to the recently
developed Multi-Constellation, Multi-Frequency ones that rely on “Undifferenced” and
Uncombined GNSS measurements. These developments have decreased the convergence
time of PPP-IAR but still, instantaneous convergence while assuring correct IAR is difficult
to achieve [5].

A field that might have an impact on fast and reliable PPP with IAR is Artificial
Intelligence (AI). Notwithstanding the fact that the mathematical models describing the
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GNSS measurements are well defined, AI, and particularly its subset Machine Learning
(ML), has been an area of increased research interest for GNSS [6]. According to published
work in GNSS research, the most typical applications that increasingly make use of ML
include satellite signal acquisition exploiting Multi-Layer Perception (MLP), the Convo-
lutional Neural Network (CNN), NLOS (Non-Line of Sight)/multipath/evil waveform
detection and classification via Logistic Regression (LR), Support Vector Machines (SVMs),
CNN, Recurrent Neural Networks (RNN), etc., included Earth observation/monitoring
harnessing the Artificial Neural Network (ANN); GNSS position error estimation utilizing
the Long Short-Term Memory (LSTM) network [7]; the detection of falsely resolved integer
ambiguities using ANN or CNN [8]; the prediction of ionospheric corrections; the detec-
tion of ionospheric scintillation, the improvement of the satellite clock, orbit prediction
accuracy, and parameter prediction in missing GNSS corrections [9]; the calibration of the
PVT algorithm’s filter parameters (e.g., tuning of the Extended Kalman Filter (EKF)) [10];
and the enhancement of the accuracy of outputted PVT information from the positioning
module [11] by deploying Reinforcement Learning (RL).

However, it is realized that current ML approaches have not been used for the IAR
problem. Even though it is not explicitly reported in the literature, possible reasons for
that could be that most ML techniques require a large amount of data and excessive
computational resources for training the algorithms. Moreover, the models developed
relying on ML might not perform sufficiently in real-time scenarios due to the lack of
representative data, considering that most training sets comprise simulated data. However,
instead, another AI approach that belongs to the family of computational intelligence [12]
has been tested for tackling the IAR problem. Specifically, computational intelligence
algorithms, or metaheuristics [12,13], have been used successfully, but not exhaustively, for
resolving the ambiguities to their integer counterparts in the ambiguity domain for relative
precise positioning GNSS.

Consequently, accounting for the importance of IAR for a fast-converging, high-
integrity solution in challenging GNSS environments, this paper offers a brief state-of-the-
art review on PPP-IAR. Next, the role of Artificial Intelligence (AI) in GNSS is explored,
focusing on metaheuristic algorithms. Finally, after a summary on the limitations of PPP-
IAR is provided, the possible integration schemes of AI-IAR are discussed, including their
pros and cons and the generic methodology that shall be adopted in future implementations.

2. Precise Point Positioning with Integer Ambiguity Resolution

In PPP, by exploiting dual-frequency GNSS measurements, it is feasible to solve the
ambiguities to their integer counterparts, subject to additional state space representation
(SSR) corrections, precise orbits, and clocks made available to the user via a network of
(global or regional) permanent stations [1]. Currently, six PPP-IAR (or else known as PPP-
RTK) models are available, namely the Common Clocks model 1 (CC-1), the Distinct Clocks
model (DC), the Common Clocks model 2 (CC-2), the Integer Recovery Clock model (IRC),
the Decoupled Clock Model (DCM), and the Uncalibrated Phase Delays (UPD)/Fractional
Cycle Biases (FCB) model [1].

The main differences among the aforementioned models lie (i) in the choice of the
S-basis, (ii) in the choice of reparameterization, and (iii) in the choice of handling the
ionospheric delay [1]. CC-1, DC, and CC-2 employ an Uncombined (UC) representation
of the measurements, while IRC, DCM, and UPD/FCB adopt an Ionosphere-Free (IF)
representation of the observations. From the literature, it is well known that adopting linear
combinations for the representation of the measurements can (i) eliminate the ionospheric
delay (first order) and (ii) amplify the corresponding wavelengths, meaning that the
ambiguities could be resolved easier. Analytically, for the IRC, DCM, and UPD/FCB
techniques, the procedure for IAR in dual-frequency PPP consists of two steps resolving
first the Hatch–Melbourne–Wübbena Wide-Lane (WL) ambiguities, which then enables the
resolving of the Narrow-Lane (NL) ambiguities. Step one is mandatory, considering that
the IF ambiguities exhibit a relatively small wavelength (of an order of 0.6 cm), whereas
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when decomposed to WL and NL (which practically is equivalent to an L1 ambiguity [14]),
the corresponding wavelengths are 86 cm and 11 cm long, respectively.

In the sequel, as the evolution of GNSS at space, network, and user side became
more pervasive, a more elegant deterministic model started to become more frequently
adopted, which relied on UC GNSS measurements. In the UC case, the ionospheric
delay is handled as an unknown parameter, which enables the utilization of ionospheric
constraints. If the ionospheric constraints exhibit better accuracy than the pseudoranges,
then a better performance is expected in terms of accuracy and convergence than the LC
models; otherwise, they are treated as equivalent [14]. For example, the authors in [15–17]
adjusted the UPD/FCB model for UC representation of the GNSS measurements to perform
IAR. Furthermore, the authors in [17] stress out the ability of the UC model to achieve rapid
re-convergences by exploiting the estimated ionospheric delays.

In addition to leveraging precise ionospheric corrections, another approach for reduc-
ing the convergence time of PPP is to use multi-frequency signals. By introducing one
additional step to the two-step procedure of dual-frequency PPP-IAR for triple-frequency
PPP-IAR, the convergence time can be reduced significantly. Analytically, in this case,
first the Extra-Wide-Lane (EWL) ambiguities are resolved to their integer counterparts,
followed by the settlement of WL and afterwards the NL ambiguities. This additional step
reduces the convergence time of triple-frequency PPP-IAR as a consequence of the long
wavelength of the EWL ambiguities (e.g., 5.86 m, 9.77 m, and 4.88 m for GPS, Galileo, and
BeiDou, respectively [18]), despite their excessive noise. For instance, the authors in [2]
formulated the UPD/FCB model for UC observations, without ionospheric corrections, for
triple-frequency, multi-constellation PPP with IAR for instantaneous positioning. It was
shown that the concentricity of the N1 residuals within 1 cycle is 90.2% due to the extremely
fast ambiguity resolution of the EWL, and subsequently, the instantaneous convergence of
the WL ambiguities with a confidence level of 95%, for horizontal and vertical thresholds
of 5 cm and 10 cm, respectively.

In addition, triple-frequency, additional frequencies (four and even five frequencies)
can be exploited for PPP-IAR as they can provide more choices for EWL and WL com-
binations [19]. However, since earlier research demonstrated that triple-frequency and
quadruple-frequency PPP-IAR perform similarly in accuracy and convergence time [19],
some authors aimed to enhance the performance of dual- and triple-frequency PPP-IAR.
Specifically, in [18], a near-optimal linear combination for dual- and triple-frequency PPP-
AR was derived utilizing the equivalence of mathematical forms between the UC and LC
models, considering that LC provide slightly less computational complexity compared
to UC functional models, while a functional model with rank 4 or 3 (i.e., a set of linear
independent observables) instead of 6 (uncombined observations) can further reduce the
computational burden. The results indicate an average of 10 min convergence time with
a success rate of 95% in kinematic mode. Finally, in [20], the authors proposed a PPP-
IAR-based model that resides on the extended DCM model of simultaneously processing
dual- and triple-frequency UC measurements using all available constellations. Their study
concludes that quasi-instantaneous centimeter accuracy-level positioning is possible with a
moving receiver.

3. Artificial Intelligence for Integer Ambiguity Resolution

Most of the aforementioned implementations of PPP-IAR algorithms, after reveal-
ing the integer nature of the corresponding ambiguities, search for the integer set in the
ambiguity domain that would result in a highly accurate solution. Notably, this is due
to the remaining unmodeled biases, especially when the raw observables contain high
noise [21]. Most of the dual- and/or triple-frequency PPP-IAR implementations men-
tioned in Section 2 implement the LAMBDA (Least-Squares Ambiguity Decorrelation
Adjustment) algorithm [22].

The PPP-IAR approach generally employs the LAMBDA algorithm for resolving
the NL ambiguities. This is due to the high correlation degree observed between the
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NL ambiguities and their accelerated resolution, which contributes significantly in the
reduction in the initialization period [15]. Furthermore, for the case that a full ambiguity
resolution (FAR) is not feasible, a subset of the ambiguities is fixed, leading to Partial
Ambiguity Resolution (PAR). Nevertheless, despite the profound effectiveness of the
LAMBDA method [5], it is still computationally cumbersome because all integer candidates
need to be checked. This results in increased search times, particularly as the number of
ambiguities and the search space increases [23], whereas the major problem with PAR is
the decision on which a set of ambiguities should finally be chosen [24].

The carrier phase ambiguity problem is an NP-hard (Non-Polynomial) problem [25],
meaning that no explicit algorithm exists to find the exact solution for the integer am-
biguities in polynomial time. The PPP-IAR problem, assuming that “Undifferenced” or
Single-Differenced, Uncombined, or Combined deterministic functional models are used,
in its linearized form reads as follows [26]:

y = Aa + Bb + e (1)

where y ∈ Rq contains the observed minus computed code and carrier-phase measure-
ments, a ∈ Zn represents the integer carrier phase ambiguities with the design matrix
A, b ∈ Rp contains the real unknowns with the design matrix B, and e represents the addi-
tive noise component. Applying the least-squares criterion to Equation (1) for estimating
the unknown parameters yields

min(y−Aa− Bb)TQ−1
y (y−Aa− Bb) (2)

where Qy is the variance–covariance matrix of the GNSS observations. The minimiza-
tion problem in Equation (2), referred to as the Mixed Integer Non-Linear Programming
(MINLP) problem, is equivalent to solving the following standard Integer Least-Squares
problem (ILS) or the Integer Quadratic Problem (IQP) [27]:

ǎ = min(â− a)TQ−1
â (â− a) (3)

where â is the float solution of Equation (2) by neglecting the integer property of the
ambiguities, Qâ is the variance–covariance matrix of the estimated float ambiguities, and
ǎ is the integer solution of Equation (3). In the recent past, AI methods originating from
the intelligence computation field have been exploited for solving the ILS problem in
Equation (3), which in principle is a closest lattice point problem [27]. More specifically, this
problem could be solved by employing principles of metaheuristics [13,27]. Metaheuristics
are iterative optimization techniques for solving combinatorial problems, i.e., finding an
optimal solution among a finite large solution space, such as the IAR problem.

Most of the well-known metaheuristic algorithms that have been implemented to IAR
are the Genetic Algorithm (GA), Differential Evolution (DE), Ant Colony Optimization
(ACO), and Artificial Fish Swarm Algorithm (AFSA) [27–33]. GA and DE draw their
inspiration from the process of natural selection, which adopts the idea of the survival of
the fittest [28,33]. Both GA and DE belong to Evolutionary Algorithms (EA) [12]. ACO is
based on biological ants’ foraging behavior, which uses pheromones as a communication
tool [27], while AFSA simulates a variety of ecological behaviors of fish schooling in the
water [31,32]. Both ACO and AFSA apply to Swarm Intelligence. GA, DE, ACO, and AFSA
all belong to population-based optimization methods, meaning that they operate on a set
of solutions (candidates), often called population.

In the context of the IAR problem, GA represents the candidate integers (or decision
variables) as chromosomes encoded in particular bit strings [28–30,34], where each chro-
mosome corresponds to an individual and all the individuals together are the population.
The most common encodings for candidate integer ambiguities in GA are binary- [34],
real- [28], and grey-coding [29]. Real coding does not have the drawbacks of binary-coding,
i.e., longer code lengths, larger solution space, and longer time costing [28,30], while gray-
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coding can effectively avoid the hamming cliff (i.e., a situation in which a small alteration in
a solution’s binary representation can result in a big change in its fitness value) [29]. The DE
algorithm represents the decision variables as individuals of integer vectors [33]. In AFSA,
the state of each artificial fish is represented by the dimension of the decision variable, i.e.,
ambiguities [31,32]. In ACO, a candidate solution (artificial ant) is also characterized by the
dimension of the decision variable [27].

According to [13], the fundamental idea behind any metaheuristic applied to the IAR
problem consists of four stages (Figure 1). Firstly, the ambiguities should be appropriately
represented using a model from which an a priori search space Q(N) and initial solution
(population) shall be constructed (stage 1). The initial population is mainly generated at
random [34] or initiated either via random numbers generated from a normal distribution
X ∼ N(â, Qâ) [32] or by using a priori information from the baseline vector (in the case of
double-difference ambiguities) as a constraint for the generated individuals of candidate
integer ambiguities [28]. Depending on how the initial solution and constraints are formed
for the optimization problem, it is indicated to use some form of decorrelation of the
ambiguities, which enhances the convergence properties of the metaheuristic algorithm to
the global minima [28,31–33].
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At the following stage (stage 2), a set of neighbor values I(Ni) adjacent to the initial
solution is generated by choosing a suitable mechanism. GA and DE utilize crossover,
a genetic operation that involves combining genetic information from two parent solu-
tions to produce one or more offspring, and mutation, a genetic operation that intro-
duces small random changes into an individual solution to promote diversity within the
population [28–30,33,34]. Despite the fact that both GA and DE use crossover and mutation,
in GA, crossover is applied to fixed positions in the encoded string, representing a can-
didate solution [28–30,34], while on the contrary, DE combines three or more individuals
from the population, usually via vector arithmetic [33]. On the other hand, AFSA utilizes
the random, preying, swarm, and following behavior of fish [31,32]. Praying corresponds
to the behavior of a fish to relocate itself to a location with a higher consecration of food,
swarming epitomizes the behavior of fish to avoid danger and over-crowded areas, and
following emphasizes the following behaviors of artificial fish when another fish finds a
location with a higher concentration of food. Conversely, ACO exploits pheromone levels
parametrized using a weighted sum of several one dimensional Gaussian functions, which
enables the reconstruction of new solutions [27].

To avoid premature convergence and stagnation at the local minima, some sub-routines
of the aforementioned mechanisms undertake explorative behaviors (a series of downhill
moves), while others undertake explorative behaviors (a series of uphill moves). In the
case of GE and DE, the role of exploitation is adopted via the crossover operation, while
exploration is performed via the mutation operation. In AFSA, the random and swarming
behaviors of artificial fish give exploration properties to the algorithm, while preying and
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following act as exploitation mechanisms. ACO implements exploitation by following trails
with high-levels of pheromones laid by artificial ants and assures exploration by allowing
artificial ants to choose paths with a lower pheromone level as well [27].

Next, the best integer ambiguity candidates are searched and selected based on an
acceptable strategy in the vicinity of I(Ni) (stage 3). In GA, DE, and AFSA, searching
and selection are applied via the appropriate transformation of the objective function,
Equation (2) or Equation (3) [28–33], to a fitness function. In most cases, the transformation
involves incorporating a positive scaling factor and applying a logarithmic operation to
the original objective function. This transformation occurs in order to avoid premature
convergence and trapping in the local optimum. On the contrary, ACO directly uses the
objective function of Equation (3) [27]. Finally, the searching process stops when no further
improvement is observed (i.e., the population of individuals has converged) [34] or a
pre-defined number of iterations is reached (stage 4) [13,27,28,32,33].

The inductions from the several metaheuristic algorithms implemented in the IAR for
double-difference ambiguity resolution encompass multiple aspects, including feasibility, a
reduction in search space, comparative analysis among different metaheuristic algorithms,
and comparison with the LAMBDA algorithm in terms of convergence speed and success
rate. Analytically, implementations of GA [28–30,34], DE [33], ACO [27], and AFSA [31,32]
demonstrate the feasibility of achieving convergence to the global optimum for the IAR
problem. As a case in point, in [27], ACO was used, exploiting a sufficiently large dataset
of simulated double-differenced float ambiguities with high precision (inferred via the
Ambiguity Delusion of Precision, or ADoP [27]). In these conditions, ACO was able to
converge to the global optima for a variety of ambiguity dimensionalities, e.g., 3–20, 21–30,
and 31–40, with increasing convergence time [27].

Regarding the reduction in search space, an early implementation of the binary-coded
GA implemented in [34] achieved the global optimum for one unknown ambiguity in just
over 2 s of CPU processing while exploring something less than 0.7 of the total search space.
In [28], a real-coded GA was introduced with adaptive probabilities for crossover and
mutation based on individual fitness (Adaptive Genetic Algorithm, AGA). With the same
experimental conditions (population number, maximum iterations, etc.), real-coded AGA
outperformed the binary-coded GA in terms of iterations needed for convergence, and
subsequently, the total search space required. Furthermore, in [31], the total space required
for searching for the correct integer ambiguities with AFSA accounts for only 2.18% of the
total problem space (413).

The authors in [32] used simulated double-difference ambiguities to compare AFSA
and AGA. Ensuring that the experimental conditions were the same for both algorithms,
they found that AFSA converged faster (6.37 s) compared to AGA (12.92 s). Later, the
authors in [31] improved AFSA by adding an attenuation factor to the visual field and
an adaptive step size for the artificial fish for better global and local exploration. A sim-
ple comparison with GA showed that AFSA can converge to the optimum solution in
2.5 s, while GA requires 5.8 s. Lastly, a recent implementation of an adaptive DE (ADE),
where mutation and crossover gained a more adaptive behavior leading to robustness and
reliability, outperformed other metaheuristic algorithms like DE and GA [33].

As for comparing metaheuristic algorithms with LAMBDA [5], a few attempts have
been realized. Specifically, in [28], the real-coded AGA was compared to LAMBDA in terms
of required convergence time. Utilizing a snapshot of low-dimensional simulated double-
differenced ambiguities, it was shown that LAMBDA converges under 91.5 s and real-coded
AGA under 14.7 s. An evaluation this time of the success rate of LAMBDA and ADE was
implemented in [33], using a more representative simulated dataset of 14-dimensional float
ambiguities of 100 epochs in succession. The success rate achieved by ADE was 94%, while
for LAMBDA, it was 81%. For both AGA [28] and ADE [30] algorithms, the fitness function
was subjected to the baseline constraint.
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4. Discussion/Proposed Methodology

Undoubtedly, the development of PPP models and algorithms for IAR has seen
tremendous progress in the last two decades. Today, it is possible to achieve a highly
accurate and robust position solution within a few minutes or quasi-instantaneously when
multi-constellation and triple-frequency GNSS measurements are used. Furthermore,
a significant improvement in the convergence and robustness of dual-frequency, multi-
constellation PPP-IAR is observed. However, there is still room for further improvement
in the search process for resolving the correct ambiguities after their integer property is
retrieved, in the case of PPP-IAR.

Today, the standard, state-of-the-art methodology for searching integer ambiguities
after their integer property is secured is the LAMBDA method [5]. Although it is very
effective, it is still computationally complex for the reasons explained in Section 3. In this
regard, an interesting alternative for IAR in the ambiguity domain relies on AI, and to this
effect, metaheuristics have great potential due to their inherent properties (e.g., parallel
search, global optimization, and robustness). Early implementations suggest comparable
results to well-established approaches and adaptation, to some extent, to the properties of
the specific problem at hand, which is how an optimization algorithm can achieve a better
performance than others according to the no-free-lunch theorem [35]. However, all of the
existing implementations are designed for double-differenced ambiguities; the results so
far are based on simulated instances of them inferred from strong models, and in most
cases, the baseline constraint is used to subject the fitness function. Therefore, further inves-
tigation is required, utilizing appropriate datasets, undergoing experiments, and exploiting
the advancements that have occurred in metaheuristics for solving NP-hard problems
(calibration, initialization, noise addition, hybrid metaheuristic algorithms, etc. [12,36,37]).

In this direction, it is envisioned that future research should focus on metaheuristics
by studying their impact on searching for integer ambiguities in the ambiguity domain
after their integer property is assured. Regarding the latter one, a PPP-IAR method will be
selected, considering its efficiency in terms of position quality capabilities (i.e., convergence
time and accuracy) and computational resources; specifically, achieving equivalent results
by efficiently reducing the dimensionality of the problem (e.g., estimable parameters). The
suggested AI approach for PPP-IAR will be assessed via tests involving a set of known
elements that are expected to affect its performance (e.g., dimensionality of the unknown
ambiguities) and a comprehensive comparison with the LAMBDA algorithm.
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