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Abstract: Driving with fatigue is a major contributor to traffic accidents and is closely linked to
central nervous system functions. To investigate the evolution of brain dynamics during simulated
driving under different EEG rhythms, we conducted an experiment in which participants performed
a 1 h driving task while their EEG signals were recorded. We used the complex network theory to
analyze data derived from the driving stimulation and found that as fatigue deepened, small-world
metrics, namely the path lengths, clustering coefficients, and measures of efficiency (global, local,
nodal), showed alterations against the driving time. Additionally, a major correlation (corr = 0.98)
was observed between the cluster coefficient with local efficiency in all frequency bands (theta,
alpha, beta). Our findings suggest that driving fatigue can cause significant trends in brain network
characteristics, such as path length (m = −103 to −93), (m = 98) for specific rhythms (beta, alpha,
theta band, respectively) and their related brain functions, which could serve as objective indicators
when evaluating the fatigue level and in the future, preventing driving fatigue and its consequences.

Keywords: EEG; PLI networks; driving fatigue; small-world metrics; functional connectivity

1. Introduction

According to WHO (World Health Organization), car accidents were responsible for
1.35 million deaths worldwide in 2016 [1]. As a result, effective assessments of mental
workload, fatigue, and drowsiness are crucial to capitalize on road safety and reduce traffic-
related accidents. In fact, it is commonly believed that drowsiness in drivers is a highly
important factor concerning car accidents [2]. Mental fatigue is a psychobiological state
caused by long periods of demanding cognitive performance and affects many everyday
activities, such as safe driving capabilities [3]. It is linked with deteriorated performance,
which can be subjectively assessed via behavioral characteristics, such as escalated reaction
times and increased errors.

To assess the properties of mental fatigue, the detection of alterations in the brain is
widely proposed as a more objective evaluation estimator, revealing strong indications of
fatigue levels [4]. However, the detection of fatigue-related effects in real-world environ-
ments is a current challenge and requires a deeper investigation into the neural mechanisms
associated with mental fatigue. Recent studies on brain functional connectivity analysis
have been promising for the enrichment of existing knowledge. Moreover, the application
of the graph theory in neuroscience has provided a valuable approach for quantitatively
evaluating brain reorganization as a result of mental fatigue [5,6].
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In this regard, different approaches and methods for the construction of functional
networks have been proposed and utilized (such as partial-directed coherence, the direct
transfer function, or phase lag index (PLI)) [7,8] representing statistical dependence and a
directed information flow between cortical regions, as well as an analysis of intrinsic brain
network mechanisms. Many recent studies on electroencephalography (EEG) have focused
on modeling and estimating brain connectivity due to increasing evidence that it can help
better understand various brain neurological conditions [9]. While recent advances in the
development of quantitative EEG analysis methods have allowed for the investigation
of interactions across the cerebral cortex during fatigue and neural markers of cognitive
fatigue have been identified [10], there are still some significant limitations; group-level
statistical methods do not provide a mechanism to predict the state of mental fatigue based
on the functional connectivity network at the individual level [11,12].

In this paper, we applied PLI functional connectivity on EEG data derived from a
driving experiment specially designed to induce fatigue. The created networks were
analyzed in terms of functional brain reorganization. Our results display fatigue-related
trends in several small-world metrics, suggesting distinct indicators of cognitive exhaustion.

2. Materials and Methods
2.1. Participants and Experimental Design

The present study recruited a total of 20 right-handed students and staff members
(age = 23.4 ± 5.4 years) from the National University of Singapore (NUS). All participants
had valid driving licenses and normal or corrected-to-normal vision. The simulated driv-
ing task was performed using City Car Driving (Version 1.5, http://citycardriving.com/
(accessed on 26 May 2023)) with left driving rules according to Singapore standards and
utilizing the driving wheel, pedals, and gearbox equipment (Logitech G27 Racing Wheel,
Logitech International SA, Lausanne, Switzerland). Based on the results of previous driving
fatigue studies, the duration of the task was set at 1 h for salient fatigue-inducing effects.
Electroencephalogram (EEG) data were captured utilizing 64 scalp electrodes made of an
Ag/AgCl material, following the conventional 10–20 system (manufactured by Waveguard,
ANT B.V., Hengelo, Netherlands) and sampled at a rate of 512 Hz. The unprocessed EEG
signals underwent band-pass filtering within the frequency range of 1 to 40 Hz. These
signals were then re-referenced to the mean of the electrodes positioned on both the left
and right mastoid areas and were subsequently reduced in the sampling rate to 256 Hz.
The route included a motorway and a rural road, containing mainly a straight road with a
minimum level of traffic in order to make the task less demanding and, therefore, subjects
more prone to drowsiness [11].

2.2. Functional Connectivity and Brain Network Construction

The phase lag index (PLI) was used to calculate functional connectivity between all
pairs of 64 electrodes for each frequency band and segment separately. In general, the
PLI is an estimation of phase synchronization that is targeted to minimize the effects of
volume conduction in EEG signals by disregarding zero and π phase differences (angles).
The PLI quantifies the asymmetry of the distribution of instantaneous phase differences,
which are set using the Hilbert transformation [13]. A distribution that is symmetric and
centered around zero could indicate spurious connectivity, and a flat distribution indicates
no connectivity. Deviances from a symmetric distribution represent dependency between
sources. The PLI can be obtained from the time series of phase differences ∆ϕ (tk), k = 1. . .N
by means of the following:

PLI = |〈sin[∆ϕ(tk)]〉| (1)

The PLI values range between 0 and 1. A zero value means no coupling or coupling
with a phase difference centered about zero. A value of 1 indicates exact phase locking at a
non-zero value of ∆ϕ. PLI values close to 1 suggest strong non-zero phase locking [13].

The statistical significance of PLI values was estimated using an empirical distribution
from 100 surrogate networks at the 5% threshold. For connectivity estimation, driving data
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were divided in a continuous fashion into windows of 5 min with a 50% overlap. Finally,
one average PLI network (62 × 62 weighted directed adjacency matrix) was obtained from
each participant.

2.3. Network Analysis

Before network analysis, the same sparsity value was used for all the networks in order
to compare topological graph measures, preventing any bias originating from different
edge numbers [14]. The property of sparsity [15] in a network and the current context is
defined as the ratio of the number of present edges to the number of all possible edges in a
fully connected network. Several levels of network sparsity were applied, ranging from 0.1
to 0.3, with a step of 0.05 and a common sparsity s = 0.25 for the analysis and display of
the results. Functional brain networks were computed for the theta band (4–7 Hz), alpha
band (8–12 Hz), and beta band (13–30 Hz). After deriving the functional brain network,
we analyzed its properties using graph theory to quantify its small-world characteristics.
Specifically, we computed small-world metrics such as the clustering coefficient (CC),
characteristic path length (L), betweenness centrality (BC), and global, local and nodal
efficiency (Effglob, Effloc, Effnod). The betweenness centrality in EEG network analysis
measured how pivotal a specific electrode or brain region was at connecting other regions
by assessing its role as a bridge for information flow along the shortest paths within the
network. Efficiency metrics in EEG network analysis encompass global efficiency, which
evaluates the network-wide information flow and local efficiency, focusing on nearby
node interactions and nodal efficiency while appraising the individual node’s information
transfer proficiency within the network. The clustering coefficient CC measures the level
of local clustering or connectivity in the network, while L evaluates its overall routing
efficiency [16].

3. Results

In the following diagrams, the evolution of the metrics (Effnod, Effloc, Effglob, CC, BC,
and L) within the 1 h driving simulation is depicted for each frequency band, namely, theta
alpha and beta bands (Figure 1), (Table 1). The first 5 min and last 5 min of the driving
sessions were excluded from the analysis to avoid the inclusion of unrelated information.

Table 1. The values of the LSM slope for each metric during the whole driving task duration.

L CC BC Effglob Effloc Effnod

theta 0.0254 −0.0183 0.0061 −0.0265 −0.0205 −0.0265
alpha −0.0288 0.0197 0.0077 0.0300 0.0235 0.0300
beta −0.0157 0.0217 −0.008 0.0275 0.0281 0.0275

Namely, in the theta band, Effnod, Effloc, Effglob and CC decrease from the first to the
last 5 min window, whereas BC and L increase within the same timeframe. Measures of
efficiency, as well as clustering coefficient values depict a decrement in the early stage of
the driving stimulation and a further decrement after the first half of it. As far as BC is
concerned, it showed a stabilized pattern until the 15th to 16th window, when it started to
decrease. On the other hand, L increased, at the early stage of the driving simulation and at
the end of the experiment, tended to have a further increment.
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mained stable until the end. In the theta band, Effnod, Effloc, Effglob, and C, comparing the 
first to the last 5 min window, showed decremental behavior, whereas BC and L in-
creased within the same time frame. Concerning the measures of efficiency and CC, we 
could observe that there was a significant decrease in the first minutes of the driving 
simulation and showed a stabilized pattern until the 12th window, when unstable be-
havior started to conclude at an overall decrease in the last minutes of the experiment. 
As far as BC is concerned, a notable increase was performed in the first minutes of the 

Figure 1. Evolution of small-world metrics during 19 windows of 5 min with a 50% overlap in:
(a) Theta (b) Alpha and (c) Beta bands.

Alpha band measures of efficiency and CC increased from the beginning of the driving
stimulation and remained rather stable for the rest of its duration. Betweenness centrality
also increased, reaching a peak at an early stage of the driving before stabilizing at lower
values and showing an increase again at the end of the experiment. Regarding the shortest
path length, it showed a decrement in the first half of driving and remained stable until the
end. In the theta band, Effnod, Effloc, Effglob, and C, comparing the first to the last 5 min
window, showed decremental behavior, whereas BC and L increased within the same time
frame. Concerning the measures of efficiency and CC, we could observe that there was a
significant decrease in the first minutes of the driving simulation and showed a stabilized
pattern until the 12th window, when unstable behavior started to conclude at an overall
decrease in the last minutes of the experiment. As far as BC is concerned, a notable increase
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was performed in the first minutes of the simulation and afterward follows a rather stable
pattern. On the other hand, L showed an almost constant increase from the early stage
of the simulation, namely from the 4th window before reaching the highest point in the
17th window. For the beta band, the overall behavior of measures of efficiency and CC was
slightly incremental, although their pattern was unstable throughout the whole driving
period. Furthermore, BC also decreased in the end, although it was stable until the last
time frame of the driving simulation. The average shortest path length was overall almost
stable, although it was rather unstable for most of the time frames.

In order to compute the fitting line for the patterns of metrics, we used the method of
least squares (LSM) in each of the frequency bands we examined above. The values of these
slopes for the metrics’ best-fitting lines are outlined in Table 1 for each of the examined
frequency bands (theta, alpha, beta). To leverage the value of our results, we performed
normalization (between 0 and 1) for all metrics’ values, comparing them in a more concise
and accurate manner.

It was observed that the most significant alterations in the metrics slopes were present
in the alpha band. In the following diagrams (Figure 2), L and Effglob values are depicted,
and the least square method fitting line is drawn, showing their pattern of alterations
within the whole driving period.
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The next step in our analysis was to compute the correlation between all the metrics
that were examined (Figure 3). The most significant correlation was observed between CC
and Effloc (corr = 0.98) in all frequency bands and between CC and the other efficiency mea-
sures ranging from 0.89 to 0.93. Also, the Shortest Average Path Length was significantly
and negatively correlated with all the measures of the efficiency and clustering coefficient
ranging from −0.89 to −0.95. The only small-world metric that was not correlated with the
rest of the metrics was BC.
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4. Discussion

The main results of this study are summarized as follows: From the first to the last
5 min bin, (1) Effnod, Effloc, Effglob, and CC in the beta band decreased significantly, whereas
BC and L increased, and (2), in the alpha band, all of the metrics increased. (3) In the theta
band, all measures of efficiency together with CC were overall decreased, while BC and L
increased significantly. (4) It can be observed that CC and Effloc are highly correlated.

In this regard, the alpha band can be distinguished as the band with the most signifi-
cant changes in the metric’s time evolution, as these slopes showed the highest variations
compared to the theta and beta bands. Our results are in line with the results of many
other studies, where the alpha band is considered significant within many driving fatigue
studies. Furthermore, it can be observed that CC and Effloc are highly correlated. In terms
of the small-world metrics efficiency and cluster coefficient, a high correlation suggests a
strong relationship between the local and global processing of information in the brain. In
other words, brain regions that are highly interconnected with each other tend to be well-
connected with distant brain regions. This is consistent with the notion of a small-world
network, where the brain is able to balance local processing and the global integration
of information.
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