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Abstract: The efficient translation of brain signals into an output device is an essential characteristic
to establish a Brain-computer Interface (BCI) link. This research investigates the applicability of
diverse correlation indices for the differentiation of specific movements (left, right, both, or none)
and states (real or imaginary) in a private BCI dataset, including EEG recordings of 32 participants.
As such, the recorded brain activation data were employed to illustrate the differences between
visual- and auditory-event-related responses during task performance. Our methodology involved a
two-pronged approach. Firstly, EEG data were collected, capturing both the visual- and auditory-
event-related signals that corresponded to each of the four movement classes. Secondly, we performed
a comparative analysis of the collected dataset using various correlation algorithms, such as Pearson,
Spearman, and Kendall, among others, to evaluate their effectiveness in differentiating between
movements and states. The results demonstrated distinctive correlation patterns, as the selected
indices effectively distinguished between real and imaginary movements, as well as between different
lower limp movements in most cases. Moreover, the correlation schemas of certain individuals
presented greater sensitivity in discerning nuances within the dataset. In this regard, it can be
inferred that the chosen correlation indices can provide valuable insights into the aforementioned
differentiation in EEG data. The results open up potential paths for improving BCI interfaces and
contributing to more accurate prediction models.

Keywords: Brain-computer Interface; EEG; correlation indices; movement differentiation; signal
processing

1. Introduction

By creating a direct communication channel between a wired or augmented brain and
an external device, Brain-computer Interface (BCI) technology is expanding the field of
neuroscience and enabling novel therapeutic uses [1]. BCIs are used in a wide range of
industries, including gaming and the military as well as medical applications that restore
lost hearing, sight, and mobility. Although the technology has made significant strides
in recent years, many elements of BCI functioning remain unexplored, especially in the
area of understanding and interpreting brain signals [2]. Understanding the distinctions
between real and imaginary movements is a key component of BCI research. Movement
imagination, also known as motor imagery, is the practice of a physical motion in the mind
without actual bodily movement. Real and imagined actions produce different brainwave
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patterns in BCI, which may be converted into precise commands for the interface [3,4]. For
the actual use of BCI, the capacity to distinguish between these motions is essential because
it can expand the range of instructions, enhancing the functionality and flexibility of the
interface. In addition, the study of Event-related Potentials (ERPs) offers a time-locked
illustration of the reactions the brain and nervous system undergo in response to external
stimuli. These potentials can be utilized in the context of BCIs to comprehend how the brain
responds to particular stimuli and may subsequently be used to develop more accurate
and responsive interfaces [5]. The reactions to sound and visual stimuli, respectively are
known as auditory and visual ERPs, allowing EEG recordings to provide a window into
the specific brain’s activity and its reaction to image or sound stimuli [6,7].

Taking the above into account, we designed our study using a multimodal approach
to probe the different facets of Brain-computer interactions. Our objective is to identify
patterns that may be used to enhance the functionality and usability of BCIs. As such,
we recorded electroencephalography (EEG) data from subjects performing both real and
imaginary leg movements, in response to visual and auditory stimuli, offering a rich
dataset for analysis. The recorded ERPs were then used to compute Pearson and Spearman
correlation coefficients, with the aim of identifying any discernible patterns or differences
between various states and movements. By examining ERPs, this work intends to explore
more into the distinctions between actual and fictitious motions in BCI applications. Our
study focuses more explicitly on investigating the correlation indices between four different
states of our BCI dataset: real and imagined left- and right-leg motions, simultaneous
movement of both legs, and no movement. This methodology enabled us to offer fresh
insights to the research community regarding the relationship between different states (real
and imaginary) and movements in a BCI context. Our approach of combining different
sensory modalities and movement types extends the understanding of how different neural
patterns are elicited and can be differentiated, thereby contributing to the optimization of
BCI technology. This study is especially significant given the increasing role of BCIs in fields
ranging from neuroscience to rehabilitative medicine and beyond. Through our rigorous
approach and detailed analysis, we aim to provide a robust basis for further research in
this rapidly evolving field.

2. Materials and Method
2.1. Dataset
2.1.1. Participants and Data Collection

Our study involved a total of thirty-three subjects (seven females), with a mean age
of 25 ± 3.7 All subjects were healthy individuals without any known neurological or
psychiatric disorders. All participants had normal (or corrected to normal) vision and
normal hearing. Each subject provided informed consent prior to participating in the study,
and all protocols adhered to ethical guidelines set by the National Technical University
of Athens institution’s review board (10 November 2021). Data were collected with a
64-channel Ag/AgCl electroencephalographic (EEG) system (Biosemi, Activetwo System,
BioSemi, Amsterdam, Netherlands), using the standard 10-20 system.

2.1.2. Experimental Design

The experimental protocol consisted of two sessions, one utilizing visual and one
auditory stimulus. In each session, each subject was presented with a data item in a queue.
In the visual session, the data item was an image of shoe soles, highlighting the left, the
right, or both shoe soles, while none presented non-highlighted soles. In the auditory
session, items were delivered through headphones, delivering 1 s spoken commands: right,
left, both, none. Each subject was requested to perform each session twice: once for real
motion (where participants had to move (or not) each limp based on the data item) and
another time for imaginary motion (where participant had to imagine the four different
movements). This resulted in two states for each movement—real and imaginary. Both
tasks were implemented in Python programming language with Psychopy framework.
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2.1.3. Preprocessing

Collected data were preprocessed, utilizing a previously validated methodology
to ensure signal quality and consistency [8]. Firstly, a bandpass filter (0.5–40 Hz) was
applied to eliminate high-frequency noise and DC drifts in the data. Then, signals were
re-referenced to the average signal of all electrodes. Artifacts corresponding to eye blinks
were removed manually utilizing Independent Component Analysis. The resulting EEG
data were then segmented into epochs, time-locked to the onset of the stimuli. The epochs
spanned from −200 ms to 800 ms relative to stimulus onset, where 0 ms marked the
onset/stimuli of the evoked event. Epochs were baseline-corrected using a 150 ms pre-
stimulus period. In this project, we use the ‘Evoked’ potentials from the MNE-Python
module [9]. This module provides tools for visualizing, analyzing, and decoding these
signals, allowing us to compare brain activity during real and imaginary movements.

2.2. Computation
2.2.1. ERP Creation and Feature Extraction

Feature extraction involved the computation of the ERPs for each condition. Each
epoch was averaged across trials for each condition, resulting in ERPs for each of the
eight conditions (four movements in two states—real and imaginary) for every subject
(Figure 1). This method facilitated the comparison between real and imaginary states for
each movement, serving as an effective means to examine the brain’s response to different
stimuli and conditions.
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Figure 1. ERPs (averaged epochs) in a butterfly mode. Each color tone represents a different EEG
channel, shown in the upper left.

2.2.2. Correlation Computation

The correlation between ERPs was computed using the Pearson’s correlation coeffi-
cient, which measures the linear relationship between two datasets, and the Spearman’s
correlation, which assesses monotonic relationships (whether linear or not). The Pearson
correlation coefficient was used to identify and quantify the strength of the association
between the real and imagined states of the same movement. Its sensitivity to the linear
relationship makes it ideal for our dataset (given the nature of our experiment), present-
ing the existence of linear associations between the signal [4,10]. On the other hand, the
Spearman correlation coefficient, a nonparametric measure of rank correlation, was used to
assess the similarity in the orderings of data when ranked by each of the variables. This was
implemented for the comparison between different types of movement across the real and
imaginary states, where a linear relationship may not be present [11]. Both methods were
employed to provide a comprehensive overview of the relationships between different con-
ditions (linear and non-linear relationships), accommodating the complexity and diversity
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of neural data [12]. Each pair of conditions (real/imaginary and left/right/both/none)
was analyzed for each subject, resulting in a correlation matrix for each individual.

3. Results

In the pursuit of exploring the relationship between various states and movements,
we computed correlation indices for all combinations within our experimental design.
Figure 2 presents the average Pearson’s and Spearman correlation coefficients, across all
subjects for each pair of conditions. To highlight individual differences, Figures 2–4 depict
the distribution of correlation coefficients for specific subjects and comparisons, and the
different correlation methods.
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Figure 3. Correlation between real and imaginary motion of subject 7: (a) Pearson’s and (b) Spearman.

Our analysis revealed several interesting patterns. Firstly, higher correlations were
observed between similar types of movements, irrespective of whether they were real
or imaginary. This was consistent across both the Pearson and Spearman measures of
correlation. For example, the correlation between real and imaginary states when moving
the right leg was significantly higher compared to the correlation between the right leg and
both legs, for both real and imaginary states (Figure 2). To highlight individual differences,
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Figures 3 and 4 present the distribution of correlation coefficients for specific subjects and
comparisons.
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Figure 4. Correlation between real and imaginary motion of subject 25: (a) Pearson’s and
(b) Spearman.

On the other hand, differences emerged when comparing the correlations between
the real and imaginary states of the same movement. The imaginary state exhibited a
tendency for higher correlation when the left and right movements were compared with
the no-movement condition. This pattern was consistent across the majority of subjects
and was further reinforced by the Spearman correlation coefficients (Figure 2b). In terms of
visual and auditory stimuli comparisons, our results showed no significant difference in
the correlation indices. However, a trend was observed where visual ERPs had marginally
higher correlation values when compared to the auditory ERPs within the same state and
movement (Figure 3).

Finally, across the majority of subjects, the correlation from visual and auditory stim-
ulus for the “both legs” movement presented the highest values compared to the other
movement conditions (Figures 2–5). This may suggest a similar cognitive processing mech-
anism during both real and imagined bilateral leg movements. These results provide
insight into the relationship between different states and movements within a BCI context.
By understanding these relationships, we can refine the design and performance of BCI
devices for improved user adaptability and responsiveness [2].
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4. Discussion

Our study aimed to discern the differences between real and imaginary movements
in a Brain-computer Interface (BCI) context, focusing specifically on different lower limp
movements and the resulting ERPs. Our findings have provided notable insights into the
complex relationships among these factors and are described below.

One of the key findings was the higher correlation between similar types of move-
ments, whether real or imaginary. This suggests that the neural representations for similar
physical and imagined movements share commonalities, an observation that aligns with
previous research emphasizing the overlapping neural mechanisms activated during real
and imagined movements [13]. Such findings substantiate the viability of motor imagery as
a reliable means of command input in BCIs. However, contrasting correlation values were
also observed when comparing the real and imaginary states of the same movement. The
imaginary state showed higher correlation with the no-movement condition when compar-
ing left and right movements. This might be indicative of the cognitive effort and control
required in motor imagery, which could bear similarities to the resting or no-movement
state, a concept that has been highlighted in earlier studies [14,15]. Interestingly, no sig-
nificant difference in correlation values between visual and auditory ERPs were found.
This could suggest that the type of stimulus, be it auditory or visual, may not significantly
influence the brain’s response during either real or imagined movement [16]. However, a
trend of marginally higher correlation values was observed for visual ERPs, encouraging
further investigation.

The results present several implications regarding the nascent field of neuroscience
and brain signal analysis, opening up several interesting avenues. From a BCI technology
perspective, our findings may contribute to enhancing signal classification algorithms. The
distinct patterns identified between real and imaginary movements can be used to improve
the accuracy of BCIs that rely on differentiating these states. Furthermore, understanding
the neural similarity between no-movement and certain imagined movements might inform
user-training strategies, assisting users in generating more distinguishable neural patterns
during different tasks [17,18]. Future research could be applied in different correlation or
similarity measures, further identifying non-linear relationships or other complex inter-
actions between evoked signals. In addition, the inclusion of other types of movements
or stimuli could provide a more comprehensive understanding of brain-behavior relation-
ships within a BCI framework. Moreover, the differentiations could be incorporated into
machine learning fusion techniques [19], allowing for resources optimization for potential
application in wearable devices [20]. Lastly, the impact of user experience or training
on the differentiation between real and imaginary movements suggest a worthwhile in-
vestigation, considering the practical significance of BCIs in rehabilitation and assistive
technology [21,22].

However, it should be taken into account that the limitations of the number of subjects
(while not insignificant) might influence the generalizability of our findings. Future studies
could benefit from a larger sample size, and from including diverse demographic groups
to account for potential inter-individual differences [23,24]. Furthermore, while we applied
rigorous preprocessing steps to our data, the potential for noise or bias inherent in EEG
recordings cannot be completely ruled out [25].

5. Conclusions

Our study provided a thorough exploration of the correlations between real and
imagined leg movements within a Brain-computer Interface (BCI) context, utilizing both
visual and auditory ERPs. Our key findings highlighted distinct correlation patterns
between similar types of movements, irrespective of their real or imagined state, and
contrasting correlations when comparing real and imaginary states of the same movement.
Interestingly, we observed a trend towards higher correlations for visual ERPs, although
the difference was not statistically significant.
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These findings have important implications for BCI technology. First, they underscore
the viability of motor imagery as a control input, as the neural representations for similar
physical and imagined movements share commonalities. Second, the distinct patterns
identified between real and imaginary movements can be utilized to improve the accuracy
of signal classification algorithms in BCIs. Lastly, the observed trends between the different
states and types of ERPs offer insights that can potentially inform user-training strategies,
thereby enhancing the overall performance of BCI systems.
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