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Abstract: Real-world time series data often contain missing values due to human error, irregular
sampling, or unforeseen equipment failure. The ability of a computational interpolation method to
repair such data greatly depends on the characteristics of the time series itself, such as the number of
periodic and polynomial trends and noise structure, as well as the particular configuration of the
missing values themselves. The interpTools package presents a systematic framework for analyzing
the statistical performance of a time series interpolator in light of such data features. Its utility and
features are demonstrated through evaluation of a novel algorithm, the Hybrid Wiener Interpolator.

Keywords: time series; interpolation; applied statistics; interpTools

1. Introduction: The Need for Interpolators

Practically-gathered time series data often contain missingness: observations are not
known due to a variety of real-world causes, including instrument failure, contamination,
data storage losses, or even climate and weather (e.g., for Earth-bound stellar observatories).
Many of the best estimation algorithms for time series characteristics assume contiguous
samples with no missingness. This contrast is the impetus behind the creation of a number
of interpolation (or imputation) methods for time series data [1–5], and the previous
development of a test-bench for evaluation of such methods [6].

Recently completed work on a new R package interpTools [7,8] provides an addi-
tional means of simulating particularly-structured artificial time series, imposing missing
observations according to a user-specified gap structure, and repairing the incomplete
series via chosen interpolation algorithms, with generous support for evaluating interpo-
lators’ statistical performance, and for generating data visualizations. In this paper we
discuss the framework developed, and present some results comparing the Hybrid Wiener
Interpolator (HWI) [1] to a number of other standard algorithms.

A significant practical challenge when determining the effectiveness of a given inter-
polator on a particular time series is that the true value of a missing data point at a given
index of a stochastic time-ordered process is generally unknown. Performance metrics,
such as those described by [2], typically assume the form:

C(x̂i, xi) = C(x̂i − xi), i = 1, ..., I, (1)

where C is some function of the deviation between the interpolated data point, x̂i, and the
true data point, xi. Without knowing xi or at least its probabilistic structure, exactly, it is
impossible to determine such a measure of accuracy.
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The statistical performance of interpolators depends greatly on the structural nuances
of the dataset chosen. Some algorithms are better-suited for time series with high num-
bers of embedded periodicities, whereas others are more suitable for low-frequency data.
Interpolators’ performance may also depend on any particular pattern of missing values
present in the data, e.g., cubic splines fail exponentially as the gap width increases [8].
Other methods, such as the HWI [1], are more resilient to longer sequences of consecutive
missing observations. As such, there are trade-offs to any chosen interpolator, and careful
consideration of the research objectives and parameters of the study should be the first step
in the selection of an interpolator in any practical setting.

2. Framework for Interpolation Using interpTools

The interpTools package allows a user to simulate a ‘mock’ time series containing
similar features to a real-world dataset of interest, such that the original data points are
known, and performance metrics of the form C(x̂i, xi) can be calculated, following the
application of a specified pattern of gaps and a particular interpolation algorithm (Figure 1).
Using simulated data enables the user to benchmark performance and make an informed
choice regarding which interpolator would be most suitable for use on similar time series
outside of the laboratory setting.

Figure 1. Example interpolation using the Exponential Weighted Moving Average method on the
first dataset (k = 1) of a series of simulated data with 20% missing values at a minimum gap length
of 2, with absolute deviations |x̂i − xi| highlighted in red.

The default package model simulates time series xt based on the classic additive
model for time series:

xt = mt + tt + ξt, t = 0, · · · , n− 1, (2)

where mt is the mean function, tt is the trend function, and ξt is the noise function. The
following section provides a brief description of each component, along with its set of
defining parameters. The package also supports arbitrary user-generated series for ex-
tension beyond this particular model: in particular, it is simple to generate multiplicative
models if that is more relevant to the interests of the user (the reason the additive model
was used in the development of this algorithm and package is that many astrophysics time
series datasets are more accurately modeled using additive structure, with limited or no
seasonality to speak of, and the second author has an interest in data of this type).
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The mean component, mt is comprised of a constant, non-varying mean element
(a ‘grand mean’), µ, and a varying polynomial trend element, µt:

mt = µ + µt, t = 0, ..., n− 1 (3)

= µ +
φ

∑
i=1

ai

(
t− c

n

)i
, (4)

where µ ∼ u
(−n

100 , n
100

)
and c is a randomly sampled integer in the range [1, n]. The poly-

nomial coefficients ai ∼ n
(
0, n

20i
)

and are sampled in this way to facilitate the desirable
property that the coefficients ‘scale down’ (i.e., ai → 0) as i → φ. The parameter φ is
chosen by the user and represents the degree of the polynomial. This could be re-expressed
without the µ by allowing the summation to run from i = 0, but structurally the code im-
plementation assumes a static non-time-varying mean and time-varying polynomial mean.

The trend component, tt is considered to be a finite linear combination of sinusoids.
The interptools package simulates the trend component according to the construction:

tt =
ψ

∑
i=1

bi sin(ωit), (5)

where bi ∼ n(1, n
200 ) (to allow for variation in relative Signal-to-Noise for individual

periodic components, with the normal distribution ensuring extremely high-coefficient
sinusoids will be rare) and ω =

[
ω1, ω2, ..., ωψ

]
with ωi defining the period of the ith

sinusoid. The default is to sample ψ = 20 unique values for each ωi ∈
[ 2π

N , π
]

(using the
fundamental Fourier frequency, and bounded by Nyquist). This is user-controllable, and
is intended to allow the user a degree of influence over the relative signal-to-noise in the
simulations, where “signal” is considered as overall periodic components, and “noise” is
the background. Many scientific datasets have dozens to thousands of such periodic signals
present (e.g., astrophysics, helioseismology, seismology, oceanography), and they are the
object of interest in such fields and analyses, so control of this parameter is of importance
for generalizability of the algorithm and package.

The noise component, ξt is assumed to be an ARMA(P?, Q?) stochastic process:

ξt = α1Xt−1 + ... + αP?Xt−P? + Zt + β1Zt−1 + ... + βQ?Zt−Q? , (6)

with variance σ2
ξt

, where P? is the autoregressive (AR) order, Q? is the moving-average
(MA) order, and Zt is a white noise process.

Each of these components can be generated independently, or simultaneously. Meta-
data regarding information about the features of each component, such as the polynomial
equation of mt, or the exact frequencies contained in tt, are saved to memory in list objects
of class simList. We reiterate here that this is simply the default structure for simulation,
and the user is able to specify their own model of interest, and generate their own synthetic
time series for testing with ease.

2.1. Imposing a Gap Structure

Once the artificial data (K time series) has been generated, the user can remove
observations according to a gap structure defined by parameters p, the proportion of
data missing, and g, the gap width, where each observation (except the endpoints) has
the same Bernoulli probability of missingness, pomit = 1/(N − 2). These inputs are
vectorized such that the user can test any number of different (p, g) combinations, where P
and G represent the total number of options for the removal percentage and gap width,
respectively. The number of unique gap structures to randomly generate under a particular
(p, g) parameterization is specified with K, which gives the user control over the number of
iterations: higher K means more replicates, which tends to give more stable estimates, as
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with most statistics (for the analyses shown here, K = 100, which empirically gave stable
results on repeated runs and random seeds). An example is shown in Figure 2.

Figure 2. An example of the relationship between the number of holes and gap width for N = 40:
(a) a time-plot of the original series; (b) a time-plot of a gappy series with p = 0.10 and g = 1; (c) a
time-plot of a gappy series with p = 0.10 and g = 4.

The result is K ‘gappy’ series, each with a total of I = p · N missing observations,
appearing structurally as≤ p·N

g randomly-spaced non-overlapping holes of width g, where
a ‘hole’ is defined as a sequence of adjacent missing observations. Note that since holes
may be placed adjacent to one another, this quantity describes the number of holes visible,
at most. Classic Missing Completely At Random (MCAR) can be simulated by setting the
gap length to 1.

2.2. Performing Interpolation

Once a set of gap-imposed data has been generated, the user may test interpolation
algorithms on those data using parInterpolate(), which executes in parallel for efficiency.
The package provides a number of built-in interpolation algorithms, though a user may
also choose to provide any developed algorithm for flexibility and extension (e.g., [3,5]).
The output is a highly nested list with every combination of (m, p, g) having a list of K
interpolated time series, each of length N, where m represents the particular interpolation
method used, and each x̂k for k = 1, ...K approximates the original time series.

2.3. Evaluating Statistical Performance

A definition of statistical performance at any time index will be given by some func-
tion of the deviation, C (Equation (1)). Generally speaking, C quantifies how well the
interpolated series, x̂ = {x̂t}N−1

t=0 , captures the essence of the original series. The package
contains 18 such performance metrics, and it is also possible for the user to define their
own custom performance statistics. For every (x, x̂) pair, statistical performance can be
calculated via the function performance(), with resulting output a list of class pf and
dimension M× P× G× K, where M represents the total number of algorithms tested, and
P and G are the total number of different proportion missing and gap width parameteriza-
tions applied, respectively. The terminal node of any (m, p, g) branch in this nested list is a
vector of all the performance criteria for a particular combination of experimental condi-
tions. Consider that for any (m, p, g) branch, there are a set of K values for each criterion.
Thus, each performance metric has a sampling distribution containing K elements. The
performance matrices can be condensed by aggregating sample statistics over K to reduce
dimensionality, via the function aggregate_pf().

The Hybrid Wiener Interpolator (HWI) [1] is a novel iterative interpolation algorithm
based on estimation of sub-components of a time series using robust frequency-domain
spectral methods. The essence of the algorithm is the estimation of periodic components
and time-varying mean elements using multitaper methods [9], enveloping an embedded
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Wiener covariance interpolation step [10] for the approximately stationary noise back-
ground. This pair-wise estimation proceeds iteratively until converged, in approximately
an Estimation-Maximization model.

As a visual example, imagine a path through such an above list, where p = 15%,
g = 10, and m = HWI, such that we end with a collection {x̂k : k ∈ 1, ..., K} (Figure 3a).
Imagine applying some performance metric formula, say, C = MSE, to each (x̂k, xk) pair,
such that we have a collection of K values. The sampling distribution of {Ck} is shown in
Figure 3b. Then, a sample statistic f (e.g., the sample median) can be calculated for this
distribution, such that f = median({Ck, k ∈ 1, .., K}) (Figure 3b). This value represents the
aggregated (median) performance of the HWI for a gap structure of (p = 15%, g = 10),
denoted by the value f (15%, 10) (indicated in Figure 3c).

Figure 3. (a) Structure diagram of K interpolations performed using the Hybrid Wiener Interpolator
for (p, g) = (15%, 10). (b) Example sampling distribution of the median of a selected performance
metric Ck. (c) An example surface plot f over {(p, g) : p ∈ 1, . . . , P, g ∈ 1, . . . , G}, indicating the
aggregated performance at (p, g) = (15%, 10).
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3. Data Visualization
3.1. 3D Surfaces

Considering the full set of possible gap combinations
{
(pi, gj)

}
, for i ∈ 1, ..., P,

j ∈ 1, ..., G as a discrete mesh in R2, mapping these aggregated statistics traces out a
surface f (p, g) inR3, where the height of the surface at a point (p, g) represents an inter-
polator’s aggregated performance when subjected to a specific proportion of data missing
and gap width. Visualizing performance as a surface helps the user to understand the
behavior of an interpolator in light of changes to gap structure. Extreme points on the
surface represent gap structures at which performance is exemplified: either optimal, or
worst-case. For cross-comparison across interpolation methods, multiple performance
surfaces can be graphically layered on top of one another, where the ‘best’ interpolator for
a particular gap structure will be at an extremum of the surfaces at the corresponding (p, g)
coordinate point.

This visualization is generated by the plotSurface() function, where the user can
specify any number of algorithms, the sample statistic to be represented by f (p, g), and a
performance metric of choice. It is also possible to select an algorithm to highlight via the
argument highlight, as well as the colour palette. As the implementation is dynamic, the
user can also interact with the surface plot widget by manipulating the camera perspective,
adjusting the zoom, and hovering over data points for more precise numerical information.
A static export of such a surface is shown in Figure 3c.

3.2. Heatmaps

For more static (and printable) representations of the 3D surface plot, heatmaps are a
nice equivalent. Using heatmapGrid(), a three-dimensional surface can be collapsed into a
heatmap through conversion of the third dimension to colour, to which the value of the
metric is proportional. The function multiHeatmap() function enables the user to arrange
multiple heatmaps into a grid to facilitate cross-comparison between multiple criteria or
methods. Demonstration examples are provided in Figure 4.

3.3. Collapsed Cross-Section Plots

Changing the perspective angle on a given surface plot can offer further insights on the
relationship between interpolator performance and the gap pattern parameters. Imagine
rotating such a surface such that it is viewed perpendicular to either the p− f or g− f
plane: this allows a user to examine performance with respect to changes in one variable
across all values of the other. The sampling distribution can be visualized as a ribbon,
where the upper and lower bounds are the largest and smallest values observed across the
set of sample statistics contained in the collapsed variable (the highest and lowest points
on the corresponding surface plot), and the central line is the median value of this set. The
user can generate these collapsed cross-section plots using the plotCS() function.

When cross_section = ‘p’, the g-axis is collapsed, and the resulting plot is a cross-
section of ‘proportion missing’ (Figure 5, left). Here, we can see how the performance of
an algorithm on a particular dataset changes as the total number of missing observations
increases (p→ P). When cross_section = ‘g’, the p-axis is collapsed, and the resulting
plot is a cross-section of gap width (Figure 5, right): we can observe how the overall
performance of an algorithm on a particular dataset changes as the width of the gaps
increases (g→ G). The widths of the ribbons may indicate the sensitivity of an algorithm
to a particular gap parameter, where ‘thicker’ ribbons indicate a greater disparity between
the best and worst interpolations, and ‘thinner’ ribbons correspond to algorithms that seem
to perform similarly regardless of the value of the defining axis.
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Figure 4. Example of heatmaps generated comparing two interpolation algorithms (Replace with
Constant and Nearest Neighbour) on a common set of data. The bottom axis is the proportion of
missing points, and the side axis is the designated width of each individual gap, with the colours
representing the median value of the Mean Squared Error (MSE) metric.

Figure 5. Representation of collapsed cross-section plots derived from a parent performance surface (center). The
shown bands extract information not shown in the 3D plot, indicating designated percentile intervals across the
simulation replicates.
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3.4. Uncollapsed Cross-Section Plots

The collapsed cross section plots can be further deconstructed using plotCS_un()
such that the performance can be assessed with respect to changes in one variable (p or g)
across each individual value of the other.

Interpretable as ‘slices’ of the surface plot generated by plotSurface(), these ‘uncol-
lapsed’ cross-section plots will give insight as to whether there are specific combinations
of (p, g) for which the performance of a particular method is particularly sensitive. Each
ribbon represents the distribution of a metric across the K simulations, where the upper
and lower bounds represent the (e.g., 2.5% and 97.5%) quantiles, respectively, and the
interior line is formed by the set of sample statistics from corresponding points on the
parent surface plot. An advantage of viewing the data in this way is that it allows us to
view the error bars at each (p, g) coordinate point without creating an over-crowded and
hard-to-read surface plot visualization. An example is shown in Figure 6.

Figure 6. Example of cross-section plots, for the MSE metric, with p and g as shown, showing the
algorithms Nearest Neighbours and Replace-With.

4. Analysis of the HWI for d = 5 Test Cases

The motivation behind the development of interpTools was to test the HWI [1],
originally developed to correct missingness in structured astrophysical data. The objective
of the research was to audit its statistical performance on various classes of time series
following the application of different gap structure parameterizations, and to complete
a full comparative analysis against more classically-used interpolation algorithms. The
following will present some results from that study demonstrating the robustness of the
HWI as well as showcasing the utility of the interpTools package.

The analysis was conducted on an (arbitrary) five artificial time series (d = 1, 2, ..., 5)
of length N = 1000, where the mean component mt was a cubic polynomial function
(φ = 3) and was fixed ∀d. The periodic trend component tt was set to vary, where the
number of embedded sinusoids, ψ, increased by a factor of ten with each new dataset
(ψd = d× 10) so as to scale the effective “signal” presence against the “noise” presence.
Recall from above that many real-world astrophysical time series have thousands of
periodic components present. All five time series were generated against a background of
ARMA(0,0) white noise.

The inclusion of a time-varying mean component allowed for the simulation of a
particular form of nonstationarity; a property that, in most other conventional interpolation
algorithms, would first need to be corrected through estimation and removal of underlying
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monotonic trends. Often in practice, this correction is either overlooked, or done using
crude techniques (such as differencing) that do not preserve the integrity of the data, and
are prone to increasing statistical error [8]. One of the major advantages of the HWI is that
it can be applied to certain classes of nonstationary data, such that no prior manipulations
are necessary [1]. Gap structures were applied with combinations of missingness propor-
tions (p) up to 30% and gap widths (g) up to 25 observations wide, of which each (p, g)
parametrization contained K = 1000 replicates. In addition to the HWI, other interpolation
algorithms were explored: the Kalman filter (KAF), Exponential Weighted Moving Average
(EWMA), and cubic splines, with further discussion of other approaches detailed in the
appendices of [8].

In assessing the performance metrics, it was clear that in this case the HWI led to
significantly more accurate estimation of the missing values, was the most consistent in
its estimation, and the most stable when subjected to increasing missingness and data
complexity [8]. The HWI maintained its rank, even when compared to the more robust KAF
and EWMA algorithms. The cubic splines performed comparably at modest gap structures,
but quite poorly when p and g were large, showing particular sensitivity to gap width.
Figure 7 provides a summary of the statistical performance of each algorithm (excluding
the cubic splines) on the fifth dataset, according to the Normalized Root Mean Squared
Deviation (NRMSD) metric (optimal when minimized), which was median-aggregated
across the 1000 replicates. The corresponding surface values for the HWI are shown in
Table 1.

Figure 7. Median Normalized Root Mean Squared Deviation (NRMSD) values across the K simulated
interpolations for each (p, g) gap structure imposed on the fifth dataset, with colour proportional to
value, and scaled across the set. Each surface and its corresponding heatmap define the performance
of a particular interpolation method (HWI, KAF, EWMA). The HWI outperformed the other methods
over all parameters.

Note that this should not be considered to be a complete or robust examination of
the performance of the HWI against other algorithms. Further analysis was done in [8],
but as with many computational algorithms, demonstration of improvements can only
be done in limited test cases due to resources. The HWI provides a number of theoretical
advantages over other classic algorithms, especially in highly structured time series with
large numbers of readily-detected periodic components, which was why it was developed,
and these results seem to reinforce that the design was effective for series of this type. The
algorithm is being used “in the wild” by several national science agencies for imputation
of scientific data sets, with good results.
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Table 1. Median NRMSD statistics of the HWI interpolations on the fifth dataset, aggregated across
the K = 1000 simulations in each (p, g) gap specification. Compare with Figure 6.

Gap Width (g)

1 5 10 25

Pr
op

or
ti

on
m

is
si

ng
(p

) 5% 11.94 10.62 10.34 11.2

10% 11.02 9.57 9.51 9.91

15% 10.42 9.17 9.17 9.42

20% 10.27 9.09 9.08 9.36

25% 10.29 9.00 9.01 9.39

30% 10.31 9.14 9.09 9.52

5. Conclusions

The R package interpTools provides a robust set of computational tools for scientists
and researchers alike to evaluate interpolator performance on artificially-generated time se-
ries data in the presence of various gap structure patterns. Investigating these relationships
in the safety of a lab setting with synthetic data allows researchers to benchmark perfor-
mance and make informed decisions about which interpolation algorithm will be most
suitable for a real-world dataset with comparable features. The package also provides a
number of data visualization tools that allow a user to distill the resulting copious amounts
of performance data into sophisticated, customizable, and interactive graphics.

Through use of this package, we have demonstrated that the Hybrid Wiener Inter-
polator demonstrates robust performance in the presence of large numbers and lengths
of gaps for a selected set of periodic signals against background noise (a relatively broad
class of time series often encountered in physical science applications). It is our hope is
that by using the framework presented in this paper, interested users will be able to better
understand the relationships between interpolators and time series, and minimize the
harmful implications of making erroneous inferences from poorly-repaired gappy time
series data. The framework also allows for comparison of novel algorithms to accepted
standard approaches, novel metrics, and novel time series structural inputs, allowing for a
very general support in the development of targeted methods.
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Abbreviations
The following abbreviations are used in this manuscript:
HWI Hybrid-Wiener Interpolator
NRMSD Normalized Root Mean Squared Deviation
KAF Kalman Filter algorithm
EWMA Exponential Weighted Moving Average algorithm
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