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Abstract: This paper addresses the problem of the unsupervised approach of credit card fraud de-
tection in unbalanced datasets using the ARIMA model. The ARIMA model is fitted to the regular
spending behaviour of the customer and is used to detect fraud if some deviations or discrepancies
appear. Our model is applied to credit card datasets and is compared to four anomaly detection
approaches, namely, the K-means, box plot, local outlier factor and isolation forest approaches. The re-
sults show that the ARIMA model presents better detecting power than that of the benchmark models.

Keywords: anomaly; fraud; ARIMA; isolation forest; K-means

1. Introduction

In recent years, there has been a dramatic increase in the use of credit cards as a means
of payment due to their ease of use and convenience. As a response to this phenomenon,
fraudsters are also adapting their malicious activities to take advantage of the situation. The
extent of this issue is significant; according to the Fifth report on card fraud published by
the European Central Bank [1], the total value of fraudulent transactions in the SEPA area in
2016 amounted to EUR 1.8 billion. According to the Nilson Report, a publication covering
global payment systems, the total loss due to frauds in 2018 amounted to USD 27.85 billion,
and it is projected to reach USD 35.67 billion in 2023 [2]. More specifically, a transaction
is said to be fraudulent when it is committed by an unauthorised party and without the
rightful owner and/or relevant institution knowing [3]. In these cases, fraudsters could
use the card for their personal interests, depleting its resources or until they are caught
or the card is blocked. This issue has sparked the interest of both academia and industry,
where individuals are working to identify solutions to this problem and to keep up with the
ever-changing approaches adopted by malicious players [4]. Credit card fraud detection is
now an active field of research, and it particularly hinges on the concept of automation;
it is in fact not always feasible or possible to manually review each transaction in order
to establish its nature [5]. In addition to this, it is also important to consider that there is
another significant human component that could make or break the attempt of a fraudster
to successfully exploit a card: the promptness of the cardholders in reporting a stolen, lost
or suspiciously used card [5]. This requires the implementation of automated tools for
smarter and faster detection of frauds, which has resulted in machine learning techniques
being increasingly tested and implemented [6]. Various popular algorithms have been
tested in this context, such as random forest, logistic regression, decision trees, support
vector machines (SVM), and neural networks [7–9]. Khare and Sait in [7] compare logistic
regression, SVM, decision tree and random forest using the Kaggle dataset for credit
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cards containing 284,807 transactions, 492 of which are fraudulent. The features of the
dataset are obtained using principal component analysis (PCA) on the original data for
confidentiality issues. The authors also state that they use the behavioural characteristics of
the owner of the card, which are shown by a variable representing the spending habits of the
customer as well as the month, hour of the day, geographical location and type of merchant.
Experimental results show that random forest is the algorithm with the best performance,
with an accuracy score of 98.6% compared to 97.7% of logistic regression, 97.5% of SVM
and 95.5% of decision tree. Varmedja et al. in [8] compare the performances of logistic
regression, naive Bayes, random forest and multi-layer perceptron on the Kaggle dataset.
The number of features is reduced through the application of feature selection and the class
imbalance addressed by oversampling with SMOTE. Their results show that random forest
is again the best algorithm , with accuracy, precision and recall equalling 99.06%, 96.38%
and 81.63%, respectively. Roy et al. in [9] use a deep learning approach to detect frauds
in credit card transactions. The dataset used in the study was provided by a financial
institution and contains almost 80 million anonymised transactions performed over a
period of 8 months. The authors perform feature engineering to apply field knowledge
to the problem and add extra features to the original ones. Due to the unbalanced nature
of the dataset, the authors also perform under-sampling at the account level for each
unique account ID. artificial neural networks (ANN), recurrent neural networks (RNN),
long short-term memory (LSTM) and gated recurrent unit (GRU) are compared in this
study; the results highlight that GRU presents the best performance with an accuracy score
of 91.6%, followed by 91.2% (LSTM), 90.4% (RNN) and 88.9% (ANN). As can be noted,
there is a common fundamental issue in these approaches: the unbalanced nature of the
datasets. In the context of credit card fraud detection, it is in fact expected that the dataset
will be very unbalanced, which greatly hinders the performance of supervised learning
techniques [6]. Another issue involves the lack of properly labelled data, which again
represents a substantial obstacle. Finally, many models lack the adaptability required to
take into account the fact that the spending behaviour of customers is likely to change
over time [6]. In order to tackle these problems, we propose a model that does not require
the knowledge of ground truths and that is designed to make the spending behaviour of
the customer as the main source of information when categorising transactions as either
legitimate or fraudulent. More specifically, we frame the problem as an anomaly detection
task in time series, where the variable represented by the time series is the daily count of
transactions for a given customer. We propose a method making use of the ARIMA model
and of a rolling windows approach to flag suspicious number of transactions as anomalies,
which are discussed in depth in the following sections.

2. Fraud Detection with Time Series Approach
2.1. ARIMA Model with Time Series Analysis

Two widely used models for time series are the autoregressive (AR) and the moving
average (MA) models, which can be used together as an autoregressive moving average
(ARMA) model. ARMA(p, q) is the combination of the AR(p) and MA(q) models, and can
be used with univariate time series.

• Autoregressive Model
The AR(p) model is defined by the equation below; it assumes that there is a dependent
linear relation between the observation and the values of a specified number of lagged
(previous) observations plus an error term.

Xt = c +
p

∑
i=1

φiXt−i + ωt (1)

where φ = (φ1, φ2, ..., φn) are the coefficients of the model, p is a non-negative integer,
c is a constant and ωt ∼ N(0, σ2).

• Moving Average Model
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The MA(p) model is defined by the equation below; it makes use of the dependency
between an observation and the residual errors resulting from the application of a
moving average model to lagged observations.

Xt = µ +
q

∑
j=1

θjωt−j + ωt (2)

where µ is the mean of the series, θ = (θ1, θ2, ..., θn) are the coefficients of the model,
and q is the order and ωt ∼ N(0, σ2).

The ARMA model, resulting from the combination of these two models, is defined
as follows:

Xt = c + ωt +
p

∑
i=1

φiXt−i +
q

∑
j=1

θjωt−j (3)

where p refers to the order of the AR model and q refers to the order of the MA model.
The main assumption in time series analysis is that the time series is stationary, meaning
that its mean and variance are constant over time; however, this is not the case in many
practical situations [10]. The solution to this can be found in the generalisation of the
ARMA model: the autoregressive integrated moving average(ARIMA) model. ARIMA
introduces the possibility to apply differencing to the data points of time series in order to
make it stationary [10]. ARIMA is now one of the most popular, flexible and simple models
to fit a time series [10]; it is defined as ARIMA(p, d, q), where p and q represent the orders
of the AR and MA models and d indicates the degree of differencing. In the context of
fraud detection, time series can be used as a tool when working with aggregated features.
Aggregation is often used to derive new features from the original ones in order to feed to
the model some information that is thought of and expected to be more relevant than the
features per se. The number of daily transactions or the total amount spent in a week are
examples of aggregated features [5].

2.2. Estimation Process of ARIMA

When using ARIMA, care should be taken to identify the combination of parameters
that best represents the data; Box–Jenkins is a method proposed by George Box and
Gwilym Jenkins in [11] that is frequently used when tuning an ARIMA model. The method
is composed of three steps:

1. Identification, which refers to the use of all available data and related information to
select the model that best represents the time series. This phase should, however, be
split into two sub-steps:

(a) Differencing
The first step requires the establishment of whether the time series is stationary
or not in order to determine whether it requires differencing. The augmented
Dickey–Fuller (ADF) test is a technique that can be used to verify if the time
series on hand is stationary. The null hypothesis of the ADF test states that
the time series can be represented by a unit root, meaning it presents a time-
dependent structure and that it is, thus, not stationary; consequently, rejecting
the null hypothesis implies that the time series is stationary.

(b) Configuration of p and q
During this phase, it is helpful to use the correlogram to visualise the auto-
correlation function (ACF) and the partial autocorrelation function (PACF)
that can help to determine a suitable choice for the orders p and q. The fun-
damental difference between the two functions is that the PACF removes the
linear dependence between the intermediate variables in order to return only
the correlation between the present and lagged value. Briefly, whereas the
autocorrelation function of AR(p) tails off, its partial autocorrelation function
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cuts off after the lag p. Conversely, the autocorrelation function of MA(q) has
a cut-off after the lag q, while its partial autocorrelation function tails off.

2. Estimation, which refers to the training phase. Once the values of p, d, q have been
established, the φ and θ coefficients can be estimated. This method uses the maximum
likelihood estimation process, which is solved by non-linear function maximisation;
for more details about this phase, the reader is referred to [11,12].

3. Diagnostics, which refers to the evaluation of the model and identification of improve-
ments. This step involves the determination of issues in the model to verify whether
it is able to effectively summarise the underlying data. The forecast residuals provide
an important source of information for diagnostics. In an ideal model, the error will
resemble white noise and will be normally distributed with a mean of 0 and a constant
variance. In addition to this, an ideal model would also leave no temporal structure
in the residuals, as they should have been learned.

2.3. Fraud Detection with ARIMA Model on Daily Counts of Transactions

Our idea is to use ARIMA on time series representing the daily count of transactions
for a given customer to detect frauds. This is based on an important point: we assume that
the number of daily transactions for a given customer follows a certain pattern [13]. On a
high level, the task of fraud detection in this context is based on the assumption that it is
possible to recognise, and hence model, the regular spending behaviour of the customer;
once this has been learned, any discrepancies and deviations from it would be likely frauds.
We can also refer to such deviations as anomalies. An anomaly is a point in a dataset whose
characteristics are significantly different compared to the other points; building from this,
anomaly detection is the process to isolate such points by determining when they are
deviating from the expected behaviour [14]. ARIMA is used to try to model the legitimate
spending behaviour of the customer and to produce a forecast. The intuition behind this
setting can be easily explained graphically. Figure 1 shows the daily transactions of a credit
card for a customer chosen in our dataset; more details about this dataset are given in the
next section. The number of legitimate transactions occurring each day for such customer
is represented by the blue dot, whereas the number of frauds is represented by the red dot.
A significant peak is observed at the same day of fraudulent transactions.

Figure 1. Plot of daily number of transactions for a customer in the dataset. Legitimate transactions
are represented by the blue dot, whereas fraudulent transactions are represented by the red dot.

Based on this information, it could be argued that an anomaly detection approach
based on the identification of anomalous counts of daily transactions may lead to the
detection of frauds. In order to detect frauds, the following steps are proposed:

1. The time series is split into training and testing set; it is important that the training
set only contains legitimate transactions so that the model can learn the legitimate
behaviour of the customers. This should then allow for the identification of anomalies.

2. In the training set, based on the legitimate transactions, the order of the ARIMA model
is identified using the Box–Jenkins method, and, then, the parameters of ARIMA are
estimated. During this phase, care is taken to ensure that the estimated coefficients
are significant and that there is no temporal structure left in the residuals. Finally, in
the testing set, one-step ahead prediction is performed using rolling windows.



Eng. Proc. 2021, 5, 56 5 of 11

3. In order to detect fraud in the testing set, the errors are calculated in terms of difference
between the predicted and actual daily count of transactions. Then, the Z-Scores are
computed and used to flag the anomalies (i.e., the frauds). The Z-Score is calculated
as z-score = x−µ

σ , where x is the prediction error on the daily count of transaction in
the testing set. µ and σ are the mean and the variance based on the errors of in-sample
prediction on the basis of the training set using our model. If the Z-Score is greater
than a threshold, the day is flagged as anomalous (i.e., as fraud).

3. Application to Dataset
3.1. Dataset Description

The dataset used for this study was provided by NetGuardians SA and contains
information about credit card transactions for 24 customers of a financial institution; it
covers the period from June 2017 to February 2019. For reasons of confidentiality, the name
of the financial institution is not mentioned. Each row is related to a customer ID and
represents a transaction with its various features (i.e., timestamp, amount etc.) including
the class label (1 for fraud and 0 for legitimate transaction). An important aspect is that each
of the 24 customers presents at least 1 fraud in the whole period. Figure 2 and Table 1 show
the number of daily transactions for all customers and the frequency of fraud and legitimate
transactions in the whole dataset. We remark that the dataset is highly imbalanced with a
proportion of fraud of 0.76%.

Table 1. Frequency of fraud and legitimate transactions in the whole dataset.

Legitimate Fraud Total

Number 11,384 87 11,471

Percentage 99.24% 0.76% 100%

Figure 2. Number of daily transactions summing up all customers.

However, it is important to note that the customers are not necessarily active during
the whole period. In fact, as illustrated in Figure 3, some of them perform transactions
only in the first part of the considered time frame, others only at the end, and others
in the middle. Our approach based on the ARIMA model requires sufficient legitimate
transactions in the training set in order to learn the legitimate behaviour of the customers.
In addition, our approach requires at least one fraud in the testing set to evaluate the
performance of the model. In this context, initially, we propose to split the dataset into
the training and testing set with a 70–30 ratio. With this setting, there is at least one fraud
in the testing set and no fraudulent transactions in the training set, but, unfortunately,
this reduces the number of customers’ time series from 24 to 9. Table 2 summarises the
composition of the final 9 time series that are used in the next section. The last column
indicates the number of frauds over the total number of transactions occurring on the same
day; as can be seen, only in one of the time series (number 10) do frauds occur on two
different days.
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Figure 3. Number of daily transactions: the blue dot represents a specific customer and the red dot
represents all customers.

Table 2. Structure of the 9 time series.

Time Series ID # Days in Train # Days in Test Fraud Proportion

0 192 83 1/14

4 193 84 1/3

5 192 83 1/16

7 186 80 1/11

8 131 57 3/15

9 164 71 8/21

10 193 84 4/17

15 191 82 1/11 and 1/2

17 119 51 2/12

3.2. Application of ARIMA Model for Daily Counts of Transactions

The previously outlined steps are performed for each of the 9 time series separately.
These are now described in detail for just one of the time series for the sake of clarity
and brevity as an illustration. As previously discussed, the first step involves establish-
ing whether the time series is stationary. To do this, we perform the ADF test, whose
results are shown in the Table 3. It can be observed that the time series is stationary with
significant results.

Next, Figure 4a,b show the PACF and ACF that are used to determine the best values
for the order p and q of the ARIMA model. For this time series, there may be a drop-off
in the PACF at lag 1 and in the ACF at either lag 1 or 2, suggesting an ARIMA(1,0,1) or
ARIMA(1,0,2). The steps for parameter estimation and residual analysis in the training set
are carried out to select one of the two models; the model ARIMA(1,0,2) is determined to
be a good model for this time series and is used to make forecasts. Figure 4c shows the
correlogram of the residuals for the selected model, and this confirms that they have a
white noise pattern. These above steps are performed for the remaining eight time series; in
some cases, the configuration may require multiple attempts to identify the best parameters.
All parameters passed on to the next stage of the study are found to be significant. It is
important to mention that for the forecasting in the testing set, we set the threshold to three.
So, when the Z-Score is greater than three, there is fraud.
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Table 3. Statistics of ADF on the stationarity for one time series.

t-Statistic −8.73162539099

p-value 3.180176629 × 10−14

(a) (b)

(c)

Figure 4. (a) Partial autocorrelation plot for sample time series; (b) autocorrelation plot for sample time series; (c) correlogram
of residuals.

3.3. Benchmark Models

Our model is compared to four different models of anomaly detection, namely, the box
plot, local outlier factor (LOF), isolation forest and the K-means models. Each benchmark
model is briefly explained in the following section.

3.3.1. Box Plot

Box plots are used in the context of exploratory data analysis; they can be used
to graphically represent data using their descriptive statistics. Box plots do not make
any assumptions about the statistical distribution followed by the sample, meaning that
potential outliers are identifies solely based on the degree of dispersion of the data points
in the sample. Box plots are very useful, because they can be used to effectively identify
patterns in groups of numbers that might be invisible to the human eye [15]. Being a visual
tool, box plots are often used to increase our understanding of data, thereby allowing for a
better interpretation of quantitative data [15]. We apply a box plot to the entire dataset (for
each time series); however, only the testing portion of the dataset is considered to calculate
the results. This is carried out for consistency reasons in order to ensure a fair comparison
of the performances.

3.3.2. Local Outlier Factor (LOF)

The local outlier factor (LOF) is an algorithm that was introduced by Breunig, Kriegel,
T. Ng and Sander in 2000 with the aim of identifying anomalous data points based on their
local deviation from their neighbours. LOF is a density-based algorithm, and it is centred
on the concept of degree of being an outlier [16], as opposed to a binary classification of
outliers. The model is local because the anomaly score assigned to each point derives
from the degree of isolation of that point compared to the its k neighbours, where k can
be specified. More precisely, the locality of a point is given by its k-nearest neighbours. A
point is considered to be an outlier when its local density is significantly lower than the
densities of its neighbours [17]. For more details about LOF, see [16]. As in the case of the
box plot, LOF is applied to the entire dataset only considering the testing set to calculate
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the results. As previously explained, this is carried out in order to retain consistency across
the tests.

3.3.3. Isolation Forest

Isolation forest is an anomaly detection algorithm that implements a new approach
compared to other models used for this purpose: rather than focussing on identifying
normal points and their deviations (i.e., anomalies), isolation forest directly focuses on
the detection of these anomalies without profiling. This can be achieved on the basis
of two fundamental properties of outliers; that is, they are few in number and different,
which means that they are isolated from the other—regular—points [18]. In order to isolate
anomalies, this algorithm makes use of a tree structure, which results in outliers being
placed closer to the root of the tree compared to the other points [19]. In isolation forest,
each isolation tree isolates the anomalies by randomly selecting features and a split value
between the minimum and the maximum values of that feature; the random partitioning
should result in anomalies having a shorter path due to both the low number of such
instances and to their inherently different characteristics leading to early partitioning. More
details about the algorithm of isolation forest can be seen in [19]. Isolation forest does
not require labels to work; however, it is trained on the training set comprising only of
legitimate transactions and used to classify the data points in the testing set.

3.3.4. K-Means

K-means is an unsupervised learning model used for clustering. Clustering is the
process by which from a given input, clusters or groupings are identified [20]. The process
by which K-means operates can be divided into two parts: given an input comprising of
a set of instances x1, x2, x3, ..., xn, and a number of clusters K, the algorithm places the
centroids c1, c2, c3, ..., cn for each cluster J at random locations, and then the steps presented
below are followed:

1. For each point xn:

(a) Find the nearest centroid cj. K-means computes the Euclidean distance be-
tween each point xn and centroid cj. This approach is often called minimising
the inertia of the clusters [21] and can be defined as follows:

SSwi = ∑
n
||xn − cj||2∀i ∈ (1, K)

where n is the number of points x and i is the number of centroids c.
(b) Assign instance xn to cluster J.

2. For each cluster J : 1, 2, ...K

(a) Compute the new centroid cj. This is achieved by calculating the mean from
each point x to the centroid x of the cluster J to which is was firstly assigned.

3. Stop when convergence is reached; that is, there are no more changes after the
iterations.

For more details on K-means, see also [21,22]. We fit K-means to the entire dataset
specifying two clusters (for legitimate and fraudulent daily counts). The cluster containing
the smallest number of instances is considered to be the cluster indicating the positive
class. As with the box plot and LOF, only the part of the outliers in the testing set is taken
into account.

4. Results

The results are presented based on three metrics: precision, recall and F-measure.
Precision refers to the ability of the model to be trustworthy in regard to its classified
positive points; that is, precision tells us how many of the predicted frauds are actually
frauds. High precision means that when the model classifies a point as positive, it is highly
likely that it is a correct classification. This metric is defined by the following equation:
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Precision = True Positive/(True Positive + False Positive). Recall indicates the ability of the
model to detect the positive class. When a model presents a high recall, it means that
the majority of positive data points are correctly identified. The equation for recall is as
follows: Recall = True Positive/(True Positive + False Negative). Precision and recall indicate
two opposite properties of a model, meaning that optimising one implies worsening the
other. In order to gain a more comprehensive overview of the performance of the model,
we can use the F-measure metric, defined as shown in the following equation: F-Measure =
2(Precision ∗ Recall)/(Precision + Recall). These metrics are calculated for each of the nine
time series analysed and are used to obtain the average as described in the previous section.
The results are presented in the Table 4. As can be noted, ARIMA presents the best result
in terms of precision and F-measure, whereas K-means provides the best performance in
terms of recall. The worst-performing model in this setting is the local outlier factor, which
presents precision and F-measure scores of 8.4% and 14.04%, respectively. It should be
pointed out that LOF was designed to be effective with multidimensional datasets [16],
which might explain its bad performance in this particular setting. The box plot model
performs the best amongst the benchmarks with a F-measure of 72.22% and is, thus, the
only one that is comparable to our model. The advantage of our model that it is based
on the concept of modelling the normal behaviour of the customer. In addition, the
forecasting by the rolling windows takes into account the dynamic changes in the spending
behaviour of the customer. While it can be argued that our model is overall the best one,
it underperforms when compared to the box plot, isolation forest and K-means in terms
of recall. As previously discussed, only 9 out of the 24 possible time series are retained
for analysis due to the lack of frauds in the testing set. Consequently, the results that
were presented are highly dependent of that particular set of data. In order to assess the
robustness of the model, the time series that were originally discarded are reintegrated
through the injection of one fake fraudulent transaction in the testing set. The occurrence
of frauds is simulated by the addition of a varying number of counts ranging from 1 to 8
to a random date in the testing set for each time series. The range is set from 1 to 8 as it
reflects that observed in the 9 time series previously discussed. It should be noted that the
performance of the models highly varies depending on how many counts are added and on
which day. In order to account for this randomness, this process is repeated 100 times, and
the average of the metrics is computed. In order to gain an overview of the performances
over the 24 time series, a global average is computed, which is shown in Table 5.

Table 4. Comparison of the performances of the 5 models using the 9 time series.

METRICS ARIMA BOX-PLOT LOF IF K-MEANS

Precision 50% 43.98% 8.4% 25.01% 21.82%

Recall 66.67% 72.22% 66.67%, 72.22% 83.33%

F-Measure 55.56% 52.22%, 14.04% 32.56% 28.95%

Table 5. Global performance of the 5 models using the 24 times series.

METRICS ARIMA BOX-PLOT LOF IF K-MEANS

Precision 34.29% 28.96% 6.41% 19.94% 22.51%

Recall 42.03% 60.54% 69.57%, 64.09% 68.16%

F-Measure 36.19% 34.91%, 11.17% 24.82% 26.81%

Despite the fact that all of models under-perform after the injection of fake frauds,
the ARIMA presents the best performance in terms of precision and F-measure, whereas
the best recall score is achieved by the local outlier factor. The precision of the latter is,
however, the worst, which means that in this case too, only the box plot is comparable
to ARIMA.
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5. Conclusions

This paper addresses the problem of the unsupervised approach of credit card fraud
detection using the ARIMA model. The main reason for focussing on time series model
is the lack of fraud data due to confidential issues, which could represent a substantial
obstacle in the development of machine learning algorithms. In this context, the goal of
our approach is to model the regular spending behaviour of the customer, allowing any
discrepancies and deviations from it to be deemed potential anomalies. The intuition
behind this approach is centred on the assumption that the occurrence of frauds on a
given day would cause the daily number of transactions to be altered in such a way that
could be detected as suspicious. In the training set, the ARIMA model is first calibrated
on the daily number of legitimate transactions in order to learn the regular spending
behaviour of the customer. In the second step, the fitted model is used to predict fraud
in the testing set by using the rolling windows. The criterion of flagging fraud is based
on the Z-score calculated on the prediction errors in the testing set. Our methodology
is applied to the dataset that is provided by NetGuardians and is compared with four
anomaly detection algorithms, namely, the K-means, box plot, local outlier factor and
isolation forest algorithms. It is observed in terms of prediction power that the ARIMA
model outperforms the other models following by the box plot method. Among the four
benchmark models, the local outlier factor performs the worst. Our model is successful
when compared to the benchmark models for two reasons:

1. It works better when there is a significant number of frauds occurring on the same
day. This is often the case, as fraudsters are known to take advantage of the time they
have before the card is blocked to make several fraudulent transactions in a short
time span [13].

2. It presents the best precision; i.e., it reduces the number of false positives compared
to the benchmark models.

3. It takes into account the dynamic spending behaviour of the customer by using the
rolling windows.

One main problem in our approach is that the ARIMA model assumes that the data
come from observations that are equally spaced in time. However, this assumption does
not hold in our study since the transaction times are unequally spaced. This issue will be
addressed in future research by using advanced approaches, such as the continuous-time
autoregressive moving average (CARMA) processes.
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