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Abstract: Epidemiology maths resorts to Susceptible-Infected-Recovered (SIR)-like models to de-
scribe contagion evolution curves for diseases such as Covid-19. Other time series estimation
approaches can be used to fit and forecast curves. We use data from the Covid-19 pandemic infection
curves of 20 countries to compare forecasting using SEIR (a variant of SIR), polynomial regression,
ARIMA and Prophet. Polynomial regression deg2 (POLY d(2)) on differentiated curves had lowest
15 day forecast errors (6% average error over 20 countries), SEIR (errors 25–68%) and ARIMA (errors
15–85%) were better for spans larger than 30 days. We highlight the importance of SEIR for longer
terms, and POLY d(2) in 15-days forecasting.

Keywords: time series forecasting; epidemiology; SIR

1. Introduction

The typical initial evolution of an epidemic when the population has no immunity
and the pathogen has high virulence and high death rate is a frightening exponential
curve. Scientists still lack a lot of knowledge about the SARS-CoV-2 virus and variants, and
recently new virus variants have increased its contagiousness. Nevertheless, we can say
that its reproduction number (rate of growth) should be around 3 and its death rate could
be around 0.3%. Since a reproduction number higher than 1 already means exponential
growth, a value of 3 indicates a significant virulence and containment is necessary if no
vaccination is available or significant acquired immunity in the population. In order to
study and predict the evolution of the curve and to decide how to act at each moment,
epidemiologists and mathematicians frequently use variants of the Susceptibility Infected
Removed (SIR). SIR or the alternative SIR with an additional state called Exposed (SEIR)
we use here, is actually a simple model. Given four possible states (S, E, I and R), at any
given moment each individual from a population can be in any of those states. At the start,
with zero immunity, all population is in state S (Susceptible). In the model individuals
transition from S to I (infected) and from there to recovered or dead (R). The model also
uses some other parameters to describe rates of transition in three differential equations.

There are many other ways to fit and forecast curves in general. Approaches such
as linear regression, polynomial regression, ARIMA [1] or other time series forecasting
approaches could in principle be used in this context as in any other context, but the ques-
tion is whether they would stand any chance when compared with SEIR that integrates
epidemic-specific parameters. Lacking all the specific model parameters that SEIR can
include, we expect those more generic time series analysis models to miss important infor-
mation that leads to future changes in the curve, but on the other hand it is a possibility that
they could be useful in short-term (few days) forecasting, with more constant conditions.

We review the approaches, setup variants of polynomial regression, ARIMA, Prophet
and SEIR, collect the Covid-19 evolution curves of the 20 hardest hit countries at the end
of March and compare their performance forecasting the last 15 days of the curves and
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different lengths as well. This setup allowed us to reach conclusions regarding their relative
merits. In this work we were slightly constrained by the fact that, except for China where
the outbreak started much earlier, we had only around 45 days of data for most countries
(the time from the start of the outbreak in most countries to this study), but on the other
hand this study is especially interesting because it deals with an ongoing outbreak of hard
consequences. Future work would be interesting in generalizing these results with more
diseases and more forecasting evaluation alternatives.

2. Related Work

Epidemiological modelling has been discussed extensively in works such as [2–6]. The
Susceptible-Infected-Removed model (SIR) is reviewed in [7] and an analytical solution
to it is discussed in [8]. According to the definition, infection transitions between the
three states given in the name itself, and a set of three equations describes the transitions
between those states. Parameters include the average contacts of individuals (Beta) times
transmission probability per contact (I), rate of deaths and recoveries, time a person is
infected D and its inverse γ. There are many other models that evolved from SIR, including
those in [9].

Polynomial regression is a fitting procedure that tries to approximate a given curve
using a polynomial of degree n. Reference [10] describes numerical methods for curve
fitting. Regression analysis [11,12] focuses especially on statistical inference related to curve
fitting and associated uncertainty. These kinds of approaches can be helpful for abstracting
trends and forecasting into the near future in different contexts.

The model Autoregressive Integrated Moving Average is reviewed in [1,13]. It uses
differentiation iterations to solve non-stationarity, plus regression, moving averages and
integration to successively improve data fitting. A simpler but also effective model [14] was
proposed by FacebookTM. In [15] we used both Prophet and a modified ARIMA to predict
evolution of business performance indicators in Telecom. In that specific application, we
concluded that ARIMA outperformed Prophet.

3. Curve Fitting and Forecasting Models
3.1. The SEIR Model Plus a Social Distance Factor

The SEIR model [5,16] has susceptible (S), exposed (E), infected (I) and recovered
(R) states and describes the dynamics of the population successively moving from one
of the states to the next. As soon as individuals reach state R they are no longer able to
become infected. Initially, the whole population is in state S. The following differential
equations model how the individuals of a population evolve between these states in SEIR.
For instance, S’(t) is the change in the number of people in state S from moment t to t + 1.
A social distancing factor is also added to model the degree of distance between people,
which has the potential to decrease the rate of contagions:

St+1 = ρ × β × St × It (1)

Et+1 = ρ × β × St × It− ∝ ×Et (2)

It+1 =∝ ×Et − γ × It (3)

Rt+1 = γ × It (4)

In these four equations, α is the inverse of the incubation time (1/dα), estimated to be
5 days in average for Covid-19 (varying between 1 and 14 days); β = τ× c is transmissibility
(τ = infection probability with contact with infected) and the average rate of contact between
susceptible and infected individuals c, obtained by curve fitting; γ is the inverse of the
mean infectious time (1/dγ), estimated to be 10 days; ρ is the social distancing factor,
varying between 0 and 1, observable by curve fitting. We have coded this model together
with least squares fitting to find the term “social distancing × Beta (ρ × β) that minimizes
the average root mean squared error (RMSE) between the SEIR curve and the official
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country curve. Forecasting was done by assuming that (ρ × β) remains the same for the
next days.

3.2. Polynomial Regression

Polynomial regression (POLY) uses least-squares fitting to find the coefficients of a
polynomial of degree n that best fit a curve. Equation (1) shows the polynomial, where
some curve Y is to be approximated by the polynomial function with coefficients C0 to Cn,

Ya = C0 × xn + C1 × xn−1 + . . . + Cn−1 × x + Cn (5)

In our case the x is the time unit (the forecast is Ya value for time unit ti. Different
polynomial degrees were tested in our experiments. We will show in our experiments that
forecasting with POLY over differentiated curves of “number of active patients” instead of
the original followed by an inverse transformation to reconstruct the curve yielded best
results (ARIMA also uses differentiation to work on stationary curves).

3.3. Time Series Forecasting with ARIMA

For our own review of time series forecasting using ARIMA, please refer to [15],
another reference is [9]. In [15] we explain how ARIMA uses Auto-Regressive (AR) and
Moving Average (MA) models and how a set of parameters are applied ineach of those
component models. Please, refer to [15] for more details on ARIMA.

3.4. Automated Parameterization of ARIMA

In automated parameterization of ARIMA, a set of three parameters are tuned (p, d,
q) and seasonality as well are obtained by automatically testing the fit of the curve for each
combination of those values. The Akaike criteria (AIC), estimating the prediction error,
provides a relative metric for the model quality. Thus, AIC provides a means for model
selection. In the following example, the combination with lowest AIC is chosen.

pdq = 0, 0, 0 resulting in AIC = 705.7393610322358
. . .

pdq = 0, 1, 1 resulting in AIC = 456.58099826482464
...
pdq = 1, 1, 1 resulting in AIC = 304.90034871700635

3.5. Time Series Forecasting with Prophet

Forecasting using Prophet is described in [17] and in detail in [18], or in our own
prior work [15]. It uses three sub-models, one analyzing the trend, another one analyzing
the seasonality and the third one taking into account festivity periods. Each of those
sub-models is modelled by a function (logistic for trend, Fourier for seasonality and an
adjustment for festivity periods.

4. Experimental Work

Our experimental setup was created using the pandemics curves (number of active
cases) up to a specific day (27 March 2020). This data can be obtained for instance in [19].
Figure 1 illustrates the curves, showing the per-million aligned active cases in 5 European
countries (we show only 5 countries to avoid cluttering). The number of active cases of the
20 most hit countries except China (27 March) were used for curve fitting, and Chinas’s
curve was used for testing longer forecasting spans.



Eng. Proc. 2021, 5, 52 4 of 8Eng. Proc. 2021, 5, 52 4 of 8 
 

 

 
Figure 1. Active cases up to 27 March, 5 Europe countries align start of outbreak (number of cases 
> 0). 

For our experimental setup we implemented each of the forecasting approaches (pol-
ynomial regression, ARIMA, Prophet and SEIR) and all necessary data loading and data 
transformations in python. The full list of countries in our setup included 21 countries. 
China was used in forecasting larger lengths. We tested polynomial degrees 1 to 4 and 
differentiation as well. The experimental procedure is simple: extract x days from the 
curve, fit the model to the truncated curve and finally forecasting the last x days using the 
model. All results report the average error using MAE relative to the values (MAEr) for 
the new forecasted segment, shown in Equation (5): 

𝑀𝐴𝐸𝑟 = ∑ 𝑌 − 𝑌𝑌𝑌𝑛  (6)

4.1. Fifteen-Day Forecast over 20 Countries 
The 15-day forecast is done on each country by extracting 15 days from the curve, 

then fitting the model to the truncated curve and finally forecasting the last 15 days using 
the model. Figure 2 and Table 1 show the results for 20 countries (POLY d(n) = polynomial 
regression with degree n on differentiated curve, Prophet d = Prophet on differentiated 
curve). 

 
Figure 2. Comparison of methods over 20 countries (MAER, stacked chart). 

  

Figure 1. Active cases up to 27 March, 5 Europe countries align start of outbreak (number of cases
> 0).

For our experimental setup we implemented each of the forecasting approaches
(polynomial regression, ARIMA, Prophet and SEIR) and all necessary data loading and
data transformations in python. The full list of countries in our setup included 21 countries.
China was used in forecasting larger lengths. We tested polynomial degrees 1 to 4 and
differentiation as well. The experimental procedure is simple: extract x days from the
curve, fit the model to the truncated curve and finally forecasting the last x days using the
model. All results report the average error using MAE relative to the values (MAEr) for the
new forecasted segment, shown in Equation (5):

MAEr =
∑n

1

∣∣∣Yi−YYei
Yi

∣∣∣
n

(6)

4.1. Fifteen-Day Forecast over 20 Countries

The 15-day forecast is done on each country by extracting 15 days from the curve,
then fitting the model to the truncated curve and finally forecasting the last 15 days using
the model. Figure 2 and Table 1 show the results for 20 countries (POLY d(n) = polynomial
regression with degree n on differentiated curve, Prophet d = Prophet on differentiated
curve).

Eng. Proc. 2021, 5, 52 4 of 8 
 

 

 
Figure 1. Active cases up to 27 March, 5 Europe countries align start of outbreak (number of cases 
> 0). 

For our experimental setup we implemented each of the forecasting approaches (pol-
ynomial regression, ARIMA, Prophet and SEIR) and all necessary data loading and data 
transformations in python. The full list of countries in our setup included 21 countries. 
China was used in forecasting larger lengths. We tested polynomial degrees 1 to 4 and 
differentiation as well. The experimental procedure is simple: extract x days from the 
curve, fit the model to the truncated curve and finally forecasting the last x days using the 
model. All results report the average error using MAE relative to the values (MAEr) for 
the new forecasted segment, shown in Equation (5): 

𝑀𝐴𝐸𝑟 = ∑ 𝑌 − 𝑌𝑌𝑌𝑛  (6)

4.1. Fifteen-Day Forecast over 20 Countries 
The 15-day forecast is done on each country by extracting 15 days from the curve, 

then fitting the model to the truncated curve and finally forecasting the last 15 days using 
the model. Figure 2 and Table 1 show the results for 20 countries (POLY d(n) = polynomial 
regression with degree n on differentiated curve, Prophet d = Prophet on differentiated 
curve). 

 
Figure 2. Comparison of methods over 20 countries (MAER, stacked chart). 
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Note that in the previous results we have chosen POLY d(2) because it had the
best forecasting results. Table 2 shows the comparison of forecasting results of different
polynomial regression options for the same experimental setup. In that table the number
in parenthesis is the polynomial degree and d stands for differentiation.
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Table 1. Comparison of methods over 20 countries (MAER).

PROPHET d PROPHET POLY d(2) ARIMA SEIR

Countries avg 23% 57% 9% 35% 28%
stdev 15% 18% 19% 16% 16%

US 64% 89% 89% 54% 21%
Spain 29% 68% 6% 37% 18%
Italy 7% 52% 4% 32% 3%

Germany 25% 69% 4% 50% 19%
France 26% 62% 6% 32% 45%

Iran 6% 14% 2% 15% 40%
UK 39% 71% 1% 34% 22%

Turkey 29% 66% 8% 78% 59%
Switzerland 11% 60% 6% 42% 32%

Belgium 29% 62% 5% 16% 11%
Netherlands 21% 58% 5% 28% 9%

Canada 41% 69% 3% 17% 25%
Austria 13% 58% 4% 52% 37%

Portugal 24% 61% 7% 40% 13%
South-Korea 7% 37% 9% 18% 45%

Brazil 18% 65% 4% 38% 38%
Israel 33% 62% 7% 58% 58%

Sweden 7% 28% 5% 12% 10%
Australia 35% 70% 2% 31% 23%
Norway 3% 23% 3% 23% 23%

Table 2. Summary of MAER for polynomial regression, 20 countries 15-day forecast.

POLY 4 POLY 3 POLY(2) POLY(1) POLY d(4) POLY d(3) POLY d(2)

44% 28% 21% 49% 14% 11% 9%

4.2. Discussion of Results

The results in Figure 2 and Table 1 show that POLY d(2) had the best 15-day forecasts
(MAEr 9 ± 19%), less than half the next competitor, then Prophet d (22 ± 15%) and SEIR
(28 ± 16%). ARIMA had (35 ± 16%) and Prophet without differentiation was the worst
(55 ± 18%). All techniques had a similar degree of variation between countries (stdevs 15%
to 19%). The experiment with multiple alternatives of polynomial regression show that
differentiating was useful and the error was smaller with smaller polynomial degree in the
tested interval 2 to 4. In essence, the polynomial regression of degree 2 is fitting the curve
by a parabola that mimics the initial steep increase of the number of daily cases, then as
confinement and social distancing kicks in, the change first to a stabilization and then a
decrease of the number of daily cases. But degree 3 or 4 on the differentiated curve also
had relatively small errors.

The fact that SEIR did not achieve the best 15-days forecast may seem surprising, since
SEIR is the preferred epidemic modeling approach. However, although its results were
still reasonable and we still expect SEIR to be the best for forecasting the whole epidemic
curve, some of its parameters are abstractions that mean it may not fit official epidemics
curves perfectly. One such parameter is the initial population of Susceptibles (S), and the
variability is due to the degree of susceptibility of individuals to the contagion and to
transmission varying in reality. There is also a problem with the official account of quantity
of infected actually infected, since there are many asymptomatic patients and knowing the
actual quantity of infected would require extensive continuous testing. The dynamics of
transmission and social distancing at a country level is also a coarse approximation, since
there exist high-density, highly populated cities and lower-density zones in every country.

Prophet on the differentiated curve scored 22% error, and both Prophet and POLY
were much better if used on the differentiated curve. The best ARIMA results were obtained
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with the input curve not differentiated (35%), but note that ARIMA itself differentiates
through the parameter d for stationarity.

4.3. Testing the Approaches on Larger Spans (China)

China was the only Covid-19 worst-hit countries curve for which there were consider-
ably more days (around 90). The next experiment consisted in removing a variable number
of days from that series, building the model and forecasting those removed days using the
model. The results are shown in Figure 3 (stacked chart) and Table 3.
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Table 3. MAER data for China spans.

Days to Forecast Prophet ARIMA SEIR Poly der
Deg 2

Poly der
Deg 3

15 4% 7% 32% 34% 67%
20 3% 10% 37% 67% 92%
30 13% 15% 25% 109% 85%
40 82% 28% 65% 119% 94%
50 254% 50% 68% 131% 220%
55 226% 81% 49% 108% 215%
60 275% 85% 37% 91% 59%

AVG 123% 39% 45% 94% 119%
STD 125% 33% 17% 33% 69%

4.4. Discussion on Larger Forecasts

SEIR was clearly superior for this case of longer forecast periods, it had the best
scores overall and least variance (error between 32% and 45%). The specific modeling that
considers important epidemiology concepts overcame the results of generic models when
modeling on longer spans. ARIMA was next (7% to 85% errors), then POLY der deg 2 (34%
to 131%), while the polynomial of degree 3 was much worse (59% to 220%). Prophet (4%
to 275%) had the smallest errors up to forecast length 30 and then the largest errors for
the remaining lengths. The advantage of ARIMA over Prophet on longer spans could be
related to ARIMA adjusting its p, d, q parameters.

4.5. Visualization of Some Results

We do not have space to show most visualizations, however, we show a few illustrative
examples next. Figure 4 is the daily cases in Spain together with the POLY d(2) forecast,
and Figure 5 is the daily cases in China together with the SEIR forecast, both showing
the actual values (blue curve) together with the estimations. Figure 6a is Spain’s 15 day
forecast using ARIMA and Figure 6b is the forecast for the same case using Prophet. We
can see that POLY d(2) was near the actual curve in Figure 4, although at the end of the
interval the divergence increased, SEIR forecast was also quite good in Figure 5, while in
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ARIMA the forecast for the last days was diverging significantly upwards and in Prophet
it was diverging downwards.
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(a) ARIMA (forecast in blue); (b) Prophet (forecast in blue).

5. Conclusions

In this article we investigated the issue of short and longer-term forecasting over epi-
demiological curves of Covid-19 using both generic forecasting approaches and the more
specific epidemiological SEIR model, with the objective of confronting the alternatives. Af-
ter describing the approaches used we created an experimental setup with the alternatives
and tested over 20 countries, plus longer-term forecasts on the longest curve (China). We
concluded that, in average, polynomial regression of degree 2 was the best for short term
(15 days or less), but on longer term SEIR was clearly superior to the competition, which
is explained by its use of more specific epidemiological parameters. The use of Covid-19
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curves makes the work very up-to-date, but on the other hand we would like to experiment
with other epidemics curves and to test different segments on multiple spans. Our own
current and future work deals also with automatic fitting, parameter optimization and
what-if analysis with the SEIR model.
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tion of data; in the writing of the manuscript, or in the decision to publish the results.
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