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Abstract: Forecasting often involves multiple time-series that are hierarchically organized (e.g.,
sales by geography). In that case, there is a constraint that the bottom level forecasts add-up to the
aggregated ones. Common approaches use traditional forecasting methods to predict all levels in the
hierarchy and then reconcile the forecasts to satisfy that constraint. We propose a new algorithm that
automatically forecasts multiple hierarchically organized time-series. We introduce a combination
of additive Gaussian processes (GPs) with a hierarchical piece-wise linear function to estimate,
respectively, the stationary and non-stationary components of the time-series. We define a flexible
structure of additive GPs generated by each aggregated group in the hierarchy of the data. This
formulation aims to capture the nested information in the hierarchy while avoiding overfitting.
We extended the piece-wise linear function to be hierarchical by defining hyperparameters shared
across related time-series. From our experiments, our algorithm can estimate hundreds of time-series
at once. To work at this scale, the estimation of the posterior distributions of the parameters is
performed using mean-field approximation. We validate the proposed method in two different
real-world datasets showing its competitiveness when compared to the state-of-the-art approaches.
In summary, our method simplifies the process of hierarchical forecasting as no reconciliation is
required. It is easily adapted to non-Gaussian likelihoods and multiple or non-integer seasonalities.
The fact that it is a Bayesian approach makes modeling uncertainty of the forecasts trivial.

Keywords: Gaussian processes; forecasting; hierarchical time-series; Bayesian statistics

1. Introduction

The problem of automatically forecasting large numbers of univariate time-series is
commonly found in different businesses [1]. In this setting, the selection of the appropriate
time-series model, estimation of its parameters, and computation of the forecasts have to
be done without human intervention. These large collections of time-series often involve
multiple time-series aggregated by groups, such as geography. In this case, the forecasts for
the bottom-level-series are required to add up to the forecasts of the aggregated ones. This
constraint is referred to as coherence, and the process of adjusting forecasts to make them
coherent is called forecast reconciliation [2]. Our work focuses on automatically forecasting a
set of these hierarchically organized time-series. The goal is to generate accurate predictions
for both the individual series and for each of the aggregation levels. This is to be achieved
while ensuring that the forecasts are coherent. Finally, our algorithm is intended to be
applied to any time-series domain.

A common approach for this type of problem is to produce forecasts for all aggregation
levels and then reconcile the forecasts using linear or non-linear models (e.g., [2–4]). This
strategy is highly dependent on the forecasting method used, and it is a two-step process.
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We follow a different approach where our forecasting algorithm takes into account the
hierarchical information when predicting the individual series. This means that we do not
need to reconcile the forecasts afterwards.

We introduce a combination of additive Gaussian processes (GPs) with a hierarchical
piece-wise linear function to estimate, respectively, the stationary and non-stationary
components of the time-series. We define a flexible structure of additive GPs that are
summed coherently for each element of a group. GPs allow us to model relevant time-
series patterns, such as seasonality or noise as their additive components. Its additive
nature contributes to capturing the potential nested information in the hierarchy while
avoiding overfitting (one common problem with GPs). In the non-stationary component,
we are interested in modeling the trend of the data and trend changes over time while
also capturing potential hierarchical relationships (e.g., similar trend patterns in the same
group). With these goals in mind, we define a hierarchical piece-wise linear function. We
adapt the idea of multilevel models from Bayesian statistics to define hyperparameters
shared across related time-series. This way, we are estimating parameters for each group
and using them to inform the estimation of the individual ones, that is, the individual
parameters are partially pooled towards the group mean. This results in forecasts for
the trend of the bottom-level series that already take into account the behavior of the
aggregated ones.

From our experiments, our algorithm is able to scale to, at least, hundreds of time-
series. The estimation of the posterior distribution of the parameters can be challenging
for datasets with this size. To be able to perform it at that scale, we used mean-field
approximation [5], which is an automatic algorithm to perform Variational Inference (VI).
We validated the proposed algorithm in two different real-world datasets, showing its
ability to work with small and large datasets with typical trend and seasonal patterns
varying between groups.

In summary, our contributions are:

• A new algorithm for hierarchical time-series forecasting that does not require any
type of reconciliation;

• The definition of a flexible structure of hierarchical additive GPs. Additive GPs
are used in statistical analysis [6], whereas we propose a formulation to adapt it to
automatic hierarchical time-series forecasting;

• The combination of additive GPs with a hierarchical piece-wise linear function to
model, respectively, the stationary and non-stationary components of hierarchical time-
series;

• An automatic method that does not require expert intervention to be fitted to new data.

We start by outlining the related work in Section 2. Section 3 introduces the algorithm,
covering the main contributions. In Section 4, we present our findings and results followed
by conclusions and future directions, in Section 5.

2. Related Work

We work with a collection of s-related univariate time-series {zi
1:T}s

i=1, where zi
1:T =

[zi
1, zi

2, · · · , zi
T ] and zi

t ∈ R denote the value of time-series i at time t. The time-series are
aggregated by groups; in fact, each time-series is associated with an element l of every
group g present in the dataset. We use vector qg,l of size s to encode this information. It
has value 1, when the series s belongs to the element l of the group g, and 0, otherwise.
To give a simple example, consider a dataset with two groups (g1 and g2), each one
with two different elements (a and b, and x and y, respectively). We start with the most
aggregated level of the data z. We can aggregate the individual series zi

t by group g1,
forming the series zg1

t , and by its elements, forming za
t and zb

t . We can do the same for the
second group g2, forming series zg2

t , or by its elements, zx
t and zy

t . At the bottom level, this
would generate four different series (i.e., zax

t , zay
t ). Figure 1 illustrates a particular example

of this dataset.
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Figure 1. Example of time-series aggregated by group.

The goal of forecasting is to predict the next τ time-steps for all time-series, that is,
{zi

T+1:τ}s
i=1.

p(zi
T+1:T+τ |zi

1:T ; θ), (1)

where θ are the parameters of the model. For any given time-series i, we refer to time-series
zi

1:T as target time-series, {1, 2, ..., T} as the training range, and to time T + 1, T + 2, . . . , T + τ
as the prediction range. The time-point T + 1 is referred to as the forecast start time and
τ ∈ N>0 is the forecast horizon. Point forecasts for a given time-series, i at time T + t are
denoted by ẑi

T+t, and the point forecast errors are denoted by ei
T+t = zi

T+t − ẑi
T+t.

2.1. Time-Series Forecasting

When we consider the automatic forecasting process of a single time-series and include
constraints such as integer or single seasonality, the state-space exponential smoothing
(ETS) [7] and automated ARIMA [1] procedures are still considered state-of-the-art ap-
proaches. When we extend to non-integer or multiple seasonalities, there are other methods
which become relevant, including TBATS [8] or Prophet [9]. In the case of Prophet, there
is also additional flexibility on how the trend is modeled. Traditional GPs do not excel
in automatic forecasting. An adaptation with benchmark forecasting resulting in single
univariate time-series has been proposed [10], but prior knowledge was introduced to
achieve that competitiveness. There are several challenges when using GPs to do automatic
forecasting, namely, the lack of a criterion for kernel selection and the long time required
for training different competing kernels. On the other hand, Recurrent Neural Networks
(RNN) are gaining popularity as an alternative to statistical methods. Nevertheless, the
settings where they can achieve competitiveness are still very narrow and require user
adaptation (see [11] for an extensive study on the topic).

Forecast accuracy is usually measured by summarizing the forecast errors using a scaled
metric, such as the Mean Absolute Scaled Error (MASE) (see [7] for an extended overview
on forecast error metrics). For seasonal time-series, a scaled error can be computed by:

qj =
ej

1
T−m

T
∑

t=m+1
|zt − zt−m|

, (2)

and MASE is defined by mean(|qj|).

2.2. Hierarchical and Grouped Time-Series

When working with related time-series, the focus is to model cross-series information
to improve univariate models. There are cases where the time-series are only related by
belonging to the same domain ([12]), while in other cases they can be aggregated in groups
or in a hierarchy. There are different methods designed to work with hierarchical time-
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series. The method initially proposed by [13] and improved in [2,14] consists in optimally
combining and reconciling all forecasts at all levels of the hierarchy. A linear regression
is used to combine the independent forecasts, guaranteeing that the revised forecasts are
as close as possible to the independent forecasts but maintaining coherence. These works
were further extended to allow a non-linear combination of the base forecasts [3] and
adapted to a Bayesian setting [4]. A Bayesian approach takes into account the uncertainty
across all levels of the hierarchy to obtain the revised forecasts.

In a different direction, [15] introduced a Bayesian hierarchical state-space model,
which used shared hyperpriors over regression coefficients and latent process characteris-
tics. Thus, the series-level parameters were inherited from global parameters which are
shared across all time-series.

2.3. Gaussian Process

In a GP, we directly infer a distribution over functions. Each function can be seen as a
random variable assigned to a finite number of discrete training points X and any finite
number of these variables have a joint Gaussian distribution. More formally, the GP is
completely specified by its mean and covariance functions:

f (x) ∼ GPs
(
m(x), k(xi, xj)

)
. (3)

The mean function is usually kept at zero, as the covariance is often flexible enough to
model most of the data patterns.

2.3.1. Kernels

The kernels define the types of functions that we are likely to sample from the dis-
tribution of functions [16]. We can then draw samples from the distribution of functions
evaluated at any number of points, that is, Cov( f (xi), f (xj)) = kθ(xi, xj). They can be sepa-
rated into stationary kernels, such as the squared exponential kernel (RBF), the periodic
kernel (PER) and the white noise kernel (WN) and non-stationary ones, such as the linear
kernel (LIN). The stationary kernels can be written as

RBF : k(xi, xj) = η2
r exp

(
− 1

2l2
r
(xi − xj)

T(xi − xj)
)

(4)

PER : k(xi, xj) = η2
p exp

(
− (2sin2(π|xi− xj|/p)

l2
p

)
)

(5)

WN : k(xi, xj) = η2
wnδxi,xj, (6)

where ηr, ηp, ηl , ηwn represent the variances, lr, lp are the length-scale parameters which
control the smoothness, c defines the offset, and p is the period. The δxi ,xj is the Kronecker
delta, which has the value of one for xi = xj, and zero otherwise.

2.3.2. Predictions

When we are predicting using GPs, we are interested in the joint distribution of the
training outputs f and the test outputs f∗. For most of the applications, we are faced
with approximate function values, since there is noise to be considered in the form of
z = f (x) + ε. Assuming additive-independent and identically distributed Gaussian noise
with variance σ2

n , the joint distribution of the observations and the function values at the
test positions can be written as[

z
f∗

]
∼ N

(
0,
[

K(X, X) + σ2
n I

K(X∗, X)

K(X, X∗)
K(X∗, X∗)

])
, (7)

where K(X, X∗) denotes the n× n∗ matrix evaluated at all pairs of training (n) and test
points (n∗). Finally, we can derive the conditional distribution [16],
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f∗|X∗, X, z ∼ N (f∗, cov(f∗)) (8)

f̄∗ , E[f∗|X∗, X] = K(X∗, X)[K(X, X) + σ2
n I]−1z (9)

cov(f∗) = K(X∗, X∗)− K(X∗, X)[K(X, X) + σ2
n I]−1K(X, X∗). (10)

2.4. Variational Inference

Variational inference is an alternative to Markov Chain Monte Carlo for fitting
Bayesian models. It provides a deterministic solution computed in a shorter time, po-
tentially less accurate, as it is an approximation. It approximates the true distribution with
a simpler distribution (usually Gaussian) q(θ; φ), easier to sample from and evaluate. It
is called variational density and is parameterized by φ. To calculate the distance between
these two distributions, the Kullback–Leibler (KL) divergence can be used. Directly mini-
mizing the KL divergence is difficult, but there is an easier and equivalent way to solve this
problem, which is by maximizing the evidence lower bound (ELBO). It can be written as

ELBO(φ) = Eq(θ;φ)[log p(z|θ)− log q(θ; φ)] (11)

φ∗ = argmaxφ ELBO(φ). (12)

There are several methods to maximize the ELBO that usually require model-specific
calculations. The algorithm Automatic Differentiation Variational Inference (ADVI) was
proposed by [5] to automate this task. An important thing to notice is that the consequence
of choosing to use a mean-field Gaussian for the variational approximation is that it
does not capture the correlations between parameters. On the other hand, the full-rank
Gaussian variational approximation is able to capture them but the computational cost can
be prohibitive.

3. Hierarchical Model
3.1. Hierarchical Structure

As we saw in Section 2.2, our work is focused on datasets that have a hierarchical or
grouping structure, and thus, there is potential information nested in those substructures
of the data. We defined the two main components of our model: the GP is used to capture
seasonality, irregularities and noise, while the trend is modeled using a piece-wise linear
model. We denote our algorithm by Hierarchical Piece-Wise Linear GPs (HPLGPs). An
illustrative representation is introduced in Figure 2.

To leverage the nested information in each group or hierarchy of our data, we modeled
an individual GP per element of each group, where g represents a group from the set of
groups G and Lg represents the elements of the specific group g. This way, we were able to
model the most important features present in each element of a group, something that we
could not do if we have directly modeled each time-series with an individual GP.

Before fitting our hierarchical model, we standardized each time-series to have mean
0 and variance 1. We defined a Normal likelihood for our target variable zs

t .

zs
t ∼ N (µs

t , σs). (13)

For its mean value, we summed the result of the piece-wise linear function ps
t with the

sum of the GPs, defined by γ
g,l
t . Recall that we are using qg,l to encode the information of

what series belong to the element l of group g. We used qg,l to ensure that we are summing
our GPs coherently for each element of a group.

µs
t = ps

t + ∑
g∈G

∑
l∈Lg

γ
g,l
t qg,l . (14)

Thus, we have a number of GPs equal to the number of elements in every group.
However, in order to narrow the learning process inside each group, the hyperparameters
are only defined per group and not per group element. Notice that we reparameterized γ

g,l
t

following the algorithm described in [16], as it is more efficient. We can denote the GPs as:



Eng. Proc. 2021, 5, 49 6 of 10

γ
g,l
t ∼ MvNormal(0, Kg

lr ,ηr
+ Kg

p,lp ,ηp
+ Kg

sigma), (15)

where Kg
lr ,ηr

, Kg
p,lp ,ηp

, Kg
sigma are the different kernels defined by group (covered in-depth in

Section 3.2). We add a piece-wise linear function to the result of the GPs in the likelihood
of our model, defined by:

ps
t = (ks + Aδs

c)x + (ms + A(−cδs
c)), (16)

where k is the growth rate, δ is the rate adjustments, m is the offset parameter, and (−cδ)
ensures that the function is continuous (this formulation is covered in-depth in Section 3.3).
Notice that we have one δ parameter for each series s and change point c. We will not
be focusing on the effect change of using a different number of change points, nor on the
automatic selection of the number of change points. Nevertheless, it is possible to address
this problem with the current formulation. If one chooses a large number of potential
points and uses a sparse prior on the δ parameter, it is the equivalent to performing a
L1 regularization.

The approximation of our parameter distributions is performed using ADVI, intro-
duced in Section 2.4.

Figure 2. Simplified representation of our proposed algorithm. Notice that the GPs are defined by
group, while the piece-wise linear functions are fitted to individual series (with priors defined by
group). The model outputs coherent bottom-series forecasts which we can directly sum up (using a
bottom-up strategy) to get the forecasts for the higher-level series.

3.2. Gaussian Processes

In designing our GPs, the goal was to define a set of kernels that is flexible enough to
be used in different settings. The combination of kernels that we used included the squared
exponential kernel (RBF), the period kernel (PER) and the white noise kernel (WN). The
equations for each kernel were presented in Section 2.3.1. The RBF kernel was selected
to model medium term non-linear irregularities in the data. We could have used a more
complex kernel, such as the rational quadratic kernel, but from our experiments, we did not
see any relevant improvement and so we avoid adding more parameters to the model. The
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choice of priors for the length-scale parameters, for both the RBF and PER kernels, needs
some attention. First, one important thing to be aware when optimizing the parameters of
the kernels are the correlations between them. For instance, the length-scale has a strong
interaction with other parameters. The same happens between kernels. The usage of more
informative priors on the hyperparameters helps to mitigate (but not erase) that problem.
Secondly, the data do not inform length-scales larger or shorter than the maximum or
minimum covariate distance. In our case, the distance between points is always one, while
the maximum distance is equal to the number of time-points in each series. Thus, we
used an inverse gamma with mass inside this interval because it suppresses both zero and
infinity. Both lr and lp are defined as l ∼ InvGamma(α = 4, β = n), where n is the number
of data points in the training set.

To model the main seasonal pattern of the data we selected a PER kernel. Since we
define a prior over the period p, we just need to be careful with the range of probable values
for p. For instance, with weekly data we just need to ensure that our distribution has a
significant amount of mass around 52 and we let the algorithm infer the value that best fits
our data. In other models, we often need to be precise and define 365.25/7 = 52.18 weeks
in a year. The period is a non-negative parameter, for which we could have chosen a distri-
bution that ensures non-negativity, such as a Gamma distribution. As we defined a very
informative prior, we decided to use a Laplace distribution p ∼ Laplace(µ = D, b = 0.1),
where D is the main seasonality pattern found in the data.

We also specified a noise model with a simple WN kernel. This kernel gives us the
capacity to absorb short term irregular behaviors without compromising the fit of the other
kernels. It also helps stabilize our covariance function. Once again, we need to use a very
informative prior for σw ∼ HalfNormal(σ = 0.01), to avoid losing valid information which
could be modeled as noise.

Finally, we can write our covariance function as:

K = KRBF + KPER + KWN = Klr ,ηr + Kp,lp ,ηp + Kσw , (17)

where lr, lp, ηt, ηp, p, and σw are all the hyperparameters to learn. As a final note to our
kernel design, our algorithm can be trivially extended to have multiple seasonalities. This
is useful when there is a weakly seasonality pattern in the data aside from the main pattern.
It can be done by adding a new component to our covariance function. A second periodic
kernel PER can be added on and the prior for its period p can be defined in the expected
range of values for the specific seasonality.

3.3. Trend Model

At this point, it is important to notice that we only used stationary kernels. Our
algorithm would not be capable to forecast most of the known time-series datasets, since
we would not be able to model the trend component. In the case of ARIMA models, the
process consists of performing a first differencing on the data and then fitting an ARMA
model. We tested the inclusion of a non-stationary kernel, the linear kernel LIN, to model
the trend of the data. Nonetheless, the results were not convincing enough. On one
hand, the RBF and LIN kernels were in some cases catching some of the same effects.
The necessary regularization to overcome this problem was somewhat customized to the
dataset in usage, not easy to generalize. We believe that this was also a consequence of the
hierarchical structure that we defined for the GPs. On the other hand, some datasets had
non-linear trends or regime changes, which we were unable to catch using a linear kernel.
We could also model the trend as the mean of the GPs, but, once again, the results were not
as convincing as the option that follows.

We decided to model the trend of the data using a piece-wise linear model, following
the definition in [9]. The trend changes are modeled by the definition of a set of change
points c at times cj, j = 1, ..., C, and a vector of trend adjustments δ ∈ Rc, where δj is the
change in rate that occurs at time cj. The rate at any time-point t is then the base rate k,
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plus all the adjustments up to that point. This can be represented by a matrix A of size
n× c, such that

aj(t) =
{

1, if t ≥ cj,
0, otherwise.

(18)

A = aj(t)T (19)

p = (k + Aδ)x + (m + A(−cδ)). (20)

Finally, we cover the prior distributions of the parameters of the piece-wise linear
model. To also leverage the group information when estimating the trend of the different
series, we defined a hierarchical structure for these parameters. This is also called partial
pooling because, while we define individual parameters for each series, they are sharing
information through a hyperprior. This has a shrinking effect on the estimations, that is, we
assume that the parameters k, m and δ come from a normal distribution centered around
their respective group mean µk, µm and µδ, with a certain standard deviation σk, σm or σδ.
We only present here the hierarchical structure for δ as it is similar to k and m,

µ
g
δ ∼ N (0, 0.1) (21)

σ
g
δ ∼ Hal f Normal(0.01) (22)

δs
c ∼ N (µ

g
δ , σ

g
δ ) (23)

4. Results

We chose datasets with different characteristics to ensure that our algorithm is able to
capture strong trend and seasonal patterns that vary across groups, while working with
either small or large numbers of series.

The first dataset used is fairly small and it represents the quarterly Australia prison
population evolution over the period 2005Q1-2016Q4. It has 32 time-series, each one having
48 time-points. We tested with different values for τ but only present here the scenario
where τ = 2D as it was consistent with the other experiments. It comprises three groups:
the six states and two territories of Australia (we will refer these two also as states for
simplification), the gender of the prisoner (male or female) and the legal status (whether
prisoners have already been sentenced or not). Despite its size, there is an interesting
change of rate of growth in the data of some groups. We can see that the algorithm behaves
rather well even with a small amount of data to be trained on. We used two different models
as a benchmark (see Table 1). First, we simply fitted individual GPs to each single series
and then aggregate these upwards to produce revised forecasts for the whole hierarchy
(usually referred as bottom-up method). The second is the optimal reconciliation algorithm
MinT proposed by [2].

Table 1: Results (MASE) for the Australia prison dataset using τ = 8.

Algorithm Bottom Total State Gender Legal All

HPLGPs 2.09 0.244 1.628 0.518 2.682 1.885
BU-GPs 2.319 1.626 1.638 1.396 2.813 2.242

MinT 2.06 0.895 1.698 0.907 1.84 1.96

The second dataset is larger (304 time-series) and comprises the monthly number
of visitors in Australia from 1998–2016. We used the first 204 time-points to train our
algorithm and the last 24 to evaluate its performance. This dataset can be disaggregated in
four different groups. The first three are purely hierarchical and concern the geographical
nature of the data: 8 states, 27 zones and 76 regions. The purpose of travelling is a different
group that contains four different elements. The total number of elements in groups is 114
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which means that we fitted 114 GPs. These data have a strong yearly seasonal pattern and,
in specific groups, there are particular trend patterns. Once again, we can see in Table 2
that our algorithm is able to not only capture the relevant patterns in individual series but
also to capture the nested ones within groups, specially in the most aggregated level of
the hierarchy.

Table 2: Results (MASE) for the Australia tourism dataset using τ = 24.

Algorithm Bottom Total State Zone Region Purpose All

HPLGPs 1.082 0.779 1.128 1.014 0.981 0.981 1.018
BU-GPs 1.211 1.271 1.312 1.211 1.122 1.121 1.196

MinT 0.906 1.27 1.07 0.893 0.895 1.04 0.897

5. Conclusions and Future Work

We proposed an algorithm for automatic hierarchical time-series forecasting. Our
results show that it can compete with its statistical counterparts, being able to effectively
capture the behaviors of the aggregated level series while not losing accuracy on the
individual ones. Our algorithm is easily extensible, for instance, to work with non-Gaussian
likelihoods or multiple seasonality patterns.

As future work, the increase of the scalability of the model can be developed further if
we consider approximation methods, such as sparse approximations (e.g., [17]). Another
interesting point to address is the posterior distributions correlations of our parameters.
There are several works (e.g., [18,19]) on low-rank approximations to the covariance matrix
to capture some of these correlations.

In the interest of reproducible science, our proposed algorithm is publicly avail-
able (https://github.com/luisroque/automatic_hierarchical_forecaster, last accessed 29
June 2021).

Funding: This work was partially funded by the Canada Research Chairs program, a Discovery
Grant from NSERC, and by the project Safe Cities - Inovação para Construir Cidades Seguras, with
the reference POCI-01-0247-FEDER-041435, co-funded by the European Regional Development
Fund (ERDF), through the Operational Programme for Competitiveness and Internationalization
(COMPETE 2020), under the PORTUGAL 2020 Partnership Agreement.
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be found here: https://github.com/luisroque/automatic_hierarchical_forecaster, last accessed 29
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