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Abstract: The contribution of this paper is two-fold. First, we present ProbCast—a novel probabilistic
model for multivariate time-series forecasting. We employ a conditional GAN framework to train
our model with adversarial training. Second, we propose a framework that lets us transform a
deterministic model into a probabilistic one with improved performance. The motivation of the
framework is to either transform existing highly accurate point forecast models to their probabilistic
counterparts or to train GANs stably by selecting the architecture of GAN’s component carefully and
efficiently. We conduct experiments over two publicly available datasets—an electricity consumption
dataset and an exchange-rate dataset. The results of the experiments demonstrate the remarkable
performance of our model as well as the successful application of our proposed framework.

Keywords: time-series; generative adversarial networks; forecasting; probabilistic; prediction

1. Introduction

Many sectors, such as health care, the automotive industry, the aerospace industry
and weather forecasting, deal with time-series data in their operations. Knowledge about
what will happen in the future is essential for making genuine decisions, and accurately
forecasting future values is key to their success. A huge body of research is therefore
dedicated to addressing the forecasting problem. An overview of various studies on the
forecasting problem is provided in [1]. Currently, the field is dominated by point prediction
methods, which are easy to understand. However, these deterministic models report the
mean of possible outcomes and cannot reflect the inherent uncertainty that exists in the
real world. The probabilistic forecast models are devised to rectify these shortcomings.
These models try to quantify the uncertainty of the predictions by forming a probability
distribution over possible outcomes [2].

In this paper, we propose ProbCast, a new probabilistic forecast model for multivariate
time series based on Conditional Generative Adversarial Networks (GANs). Conditional
GANs are a class of NN-based generative models that enable us to learn conditional
probability distribution given a dataset. ProbCast is trained using a Conditional GAN
setup to learn the probability distribution of future values conditioned on the historical
information of the signal.

While GANs are powerful methods for learning complex probability distributions,
they are notoriously hard to train. The training process is very unstable and quite depen-
dent on careful selection of the model architecture and hyperparameters [3]. In addition to
ProbCast, we suggest a framework for transforming an existing deterministic forecaster—
which is comparatively easy to train—into a probabilistic one that exceeds the performance
of its predecessor. By using the proposed framework, the space for searching the GAN’s
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architecture becomes considerably smaller. Thus, this framework provides an easy way
to adapt highly accurate deterministic models to construct useful probabilistic models,
without compromising the accuracy, by exploiting the potential of GANs.

In summary, the main contributions of this article are as follows:

• We introduce ProbCast, a novel probabilistic model for multivariate time-series forecasting.
Our method employs a conditional GAN setup to train a probabilistic forecaster.

• We suggest a framework for transforming a point forecast model into a probabilistic
model. This framework eases the process of replacing the deterministic model with
probabilistic ones.

• We conduct experiments on two publicly available datasets and report the results,
which show the superiority of ProbCast. Furthermore, we demonstrate that our
framework is capable of transforming a point forecast method into a probabilistic
model with improved accuracy.

2. Related Work

Due to the lack of a standard evaluation method for GANs, initially they were applied
to domains in which their results are intuitively assessable, for example, images. However,
recently, they have been applied to time-series data. Currently, GANs are applied to various
domains for generating realistic time-series data including health care [4–8], finance [9,10]
and the energy industry [11–13]. In [14], the authors combine GAN and auto-regressive
models to improve sequential data generation. Ramponi et al. [15] condition a GAN on
timestamp information to handle irregular sampling.

Furthermore, researchers have used conditional GANs to build probabilistic forecast-
ing models. Koochali et al. [16] used a Conditional GAN to build a probabilistic model
for univariate time-series. They used Long Short Term Memory (LSTM) in the GAN’s
component and tested their method on a synthetic dataset as well as on two publicly
available datasets. In [17], the authors utilized LSTM and Multi-Layer Perceptron (MLP)
in a conditional GAN structure to forecast the daily closing price of stocks. The authors
combined the Mean Square Error (MSE) with the generator loss of a GAN to improve
performance. Zhou et al. [18] employed LSTM and a convolutional neural network (CNN)
in an adversarial training setup to forecast the high-frequency stock market. To guarantee
satisfying predictions, this method minimizes the forecast error in the form of Mean ab-
solute error (MAE) or MSE during training in conjunction with the GAN value function.
Lin et al. [19] proposed a pattern sensitive forecasting model for traffic flow, which can
provide accurate predictions in unusual states without compromising its performance in
its usual states. This method uses conditional GAN with MLP in its structure and adds two
error terms to the standard generator loss. The first term specifies forecast error and the
second term expresses reconstruction error. Kabir et al. [20] make use of adversarial train-
ing for quantifying the uncertainty of the electricity price with a prediction interval. This
line of research is more aligned with the method we presented in this article; however, the
methods suggested in [17–19] include a point-wise loss function in the GAN loss function.
Minimizing suggested loss functions would decrease the statistical error values such as
RMSE, MAPE and MSE. However, they encourage the model to learn the mean of possible
outcomes instead of the probability distribution of future value. Hence, their probabilistic
forecast can be misleading despite the small statistical error.

3. Background

Here, we work with a multivariate time-series X = {X0, X1, ..., XT}, where each
Xt = {xt,1, xt,2, ..., xt, f } is a vector with size f equal to the number of features. In this paper,
xt, f refers to the data point at time step t of feature f and Xt points to the feature vector
at time step t. The goal is to model P(Xt+1|Xt, .., X0), the probability distribution for Xt+1
given historical information {Xt, .., X0}.
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3.1. Mean Regression Forecaster

To address the problem of forecasting, we can take the predictive view of regression [2].
Ultimately, the regression analysis aims to learn the conditional distribution of a response
given a set of explanatory variables [21]. The mean regression methods are deterministic
methods, which are concerned with accurately predicting the mean of the possible outcome,
that is, µ(P(Xt+1|Xt, .., X0)). There is a broad range of mean regression methods available
in the literature; however, all of them are unable to reflect uncertainty in their forecasts.
Hence, their results can be unreliable and misleading in some cases.

3.2. Generative Adversarial Network

In 2014, Goodfellow et al. [22] introduced a powerful generative model called the
Generative Adversarial Network (GAN). GAN can implicitly learn probability distribution,
which describes a given dataset, that is, P(data) with high precision. Hence, it is capable
of generating artificial samples with high fidelity. The GAN architecture is composed of
two neural networks, namely generator and discriminator. These components are trained
simultaneously in an adversarial process. In the training process, first, a noise vector z is
sampled from a known probability distribution Pnoise(z) and is fed into a generator. Then,
the generator transforms z from Pnoise(z) to a sample, which follows Pdata. On the other
hand, the discriminator checks how well the generator is performing by comparing the
generator’s outputs with real samples from the dataset. During training, this two-player
minimax game is set in motion by optimizing the following value function:

min
G

max
D

V(D, G) = Ex∼Pdata(x)[log(D(x))] +

Ez∼Pnoise(z)[log(1− D(G(z)))].
(1)

However, GAN’s remarkable performance is not acquired easily. The training process
is quite unstable and the careful selection of GAN’s architecture and hyperparameters
is vital for stabilizing the training process [3]. Since we should search for the optimal
architecture of the generator and discriminator simultaneously, it is normally a cumbersome
and time-consuming task to find a perfect combination of structures in a big search space.

3.3. Conditional GAN

Conditional GAN [23] enables us to incorporate auxiliary information, called the
condition, into the process of data generation. In this method, we provide an extra piece
of information, such as labels, to both the generator and the discriminator. The generator
must respect the condition while synthesizing a new sample because the discriminator
considers the given condition while it checks the authenticity of its input. The new value
function V(G, D) for this setting is:

min
G

max
D

V(D, G) = Ex∼Pdata(x)[log(D(x|y))] +

Ez∼Pnoise(z)[log(1− D(G(z|y)))].
(2)

After training a Conditional GAN, the generator learns implicitly the probability
distribution of the given condition of the data, that is, P(data|condition).

4. Methodology
4.1. ProbCast: The Proposed Multivariate Forecasting Model

In this article, we consider Conditional GAN as a method for training a probabilistic
forecast model using adversarial training. In this perspective, the generator is our prob-
abilistic model (i.e., ProbCast) and the discriminator provides the required gradient for
optimizing ProbCast during training. To learn P(Xt+1|Xt, .., X0), the historical information
{Xt, .., X0} is used as the condition of our Conditional GAN and the generator is trained
to generate Xt+1. Hence, the probability distribution, which is learned by the generator,
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corresponds to P(Xt+1|Xt, .., X0), that is, our target distribution. The value function, which
we used for training the ProbCast (indicated as PC), is:

min
PC

max
D

V(D, PC) = EXt+1∼Pdata(Xt+1)
[ log D(Xt+1|Xt, .., X0)] +

Ez∼Pz(z)[ log (1− D(PC(z|Xt, .., X0)))].
(3)

4.2. The Proposed Framework for Converting Deterministic Model to Probabilistic Model

By stepping into the realm of multivariate time-series, other challenges also need to
be addressed. In the multivariate setting, we require more complicated architecture to
figure out dependencies between features and to forecast the future with high accuracy.
Furthermore, as previously mentioned, GANs require precise hyperparameter tuning to
have a stable training process. Considering required network complexity for handling
multivariate time-series data, it is very cumbersome, or in some cases impossible, to find
suitable generator and discriminator architecture concurrently which performs accurately.
To address this problem, we propose a new framework for building a probabilistic forecaster
based on a deterministic forecaster using GAN architecture.

In this framework, we build the generator based on the architecture and hyper-
parameters of the deterministic forecaster and train it using appropriate discriminator
architecture. In this fashion, we can perform the task of finding an appropriate generator
and discriminator architecture separately, which results in simplification of the GAN
architecture search process. In other words, by using this framework, we can transform an
existing accurate deterministic model into a probabilistic model with increased precision
and better alignment with the real world.

4.3. Train Pipeline

Figure 1 demonstrates the proposed framework, as well as the conditional GAN setup,
for training ProbCast. First, we build an accurate point forecast model by searching for the
optimal architecture of the deterministic model. In the case that a precise point forecast
model exists, we can skip the first step and use an existing model. Then, we need to
integrate the noise vector z into the deterministic model architecture. In our experiments,
we obtain the best results when we insert the noise vector into the later layers of the
network, letting earlier layers of the network learn the representation of the input window.
Finally, we train this model using adversarial training to acquire our probabilistic forecast
model, that is, ProbCast.

With the generator architecture at hand, we only need to search for an appropriate
time-series classifier to serve as the discriminator during the training of GAN. By reducing
the search space of GAN architecture to the discriminator only, we can efficiently find a
discriminator structure that is capable of training the ProbCast with a superior performance
in comparison to the deterministic model. The following steps summarize the framework:

1. Employ an accurate deterministic model;

(a) Either use an existing model;
(b) Or search for an optimal deterministic forecaster;

2. Structure the generator based on deterministic model architecture and incorporate
the noise vector into the network, preferably into later layers;

3. Search for an optimal discriminator structure and train the generator using it.
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Figure 1. The demonstration of the proposed framework and adversarial training setup. The pipeline
is followed from top to bottom. First, we search for the optimal architecture of the deterministic
model. The deterministic model consists of a GRU block for the learning input window representation
and two dense layers to map the representation to the forecast. Then, the noise vector z is integrated
into the deterministic model to build the generator. Finally, the generator is trained using a suitable
discriminator in a conditional GAN setup to obtain ProbCast.

5. Experiment
5.1. Datasets

We tested our method on two publicly available datasets—electricity and exchange-
rate datasets (we used datasets from https://github.com/laiguokun/multivariate-time-
series-data as they were prepared by the authors of [24]). The electricity dataset consists
of the electricity consumption of 321 clients in KWh, which was collected every 15 min
between 2012 and 2014. The dataset was converted to reflect hourly consumption. The
exchange-rate dataset contains the daily exchange-rate of eight countries, namely Australia,
Great Britain, Canada, Switzerland, China, Japan, New Zealand, and Singapore, which
was collected between 1990 and 2016. Table 1 lists the properties of these two datasets.

https://github.com/laiguokun/multivariate-time-series-data
https://github.com/laiguokun/multivariate-time-series-data
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For our experiments, we used 75% of the datasets for training, 5% for validation and
20% for testing.

Table 1. The properties of datasets.

Electricity Dataset Exchange-Rate Dataset

Dataset length 62,304 7588
Number of feature 321 8
Sample rate 1 h 1 day

5.2. Setup

In each of our experiments, first we ran an architecture search to find an accurate
deterministic model. For training the deterministic model, we employed MAE as a loss
function. In Figure 1, the architecture of the deterministic model is indicated. We used
a Gated recurrent unit (GRU) [25] block to learn the representation of the input window.
Then, the representation passed through two dense layers to map from the representation
to the forecast. We adopted the architecture of the most precise deterministic model, which
we found in order to build the ProbCast by concatenating the noise vector to the GRU
block output (i.e., representation) and extending the MLP block as shown in Figure 1.
Finally, we searched for the optimal architecture of the discriminator (Figure 2) and trained
the ProbCast. The discriminator concatenated Xt+1 to the end of the input window and
constructed {Xt+1, Xt, .., X0}. Then it utilized a GRU block followed by two layers of MLP
to inspect the consistency of this window. We used the genetic algorithm to search for the
optimal architecture. We coded our method using Pytorch [26].

X0 Xt…X1

Input window

Discriminator Model

GRU block

Dense
layer

Xt+1

Prediction
Real
FakeX0 Xt…X1 Xt+1

Concat

Figure 2. The discriminator architecture of our conditional GAN. The number of layers and cells in
the GRU block are hyperparameters.

5.3. Evaluation Metric

To report the performance of the ProbCast, we used the negative form of the Continu-
ous Ranked Probability Score [27] (denoted by CRPS∗) as the metric. The CRPS∗ reflects
the sharpness and calibration of a probabilistic method. It is defined as follows:

CRPS∗(F, x) = EF|X− x| − 1
2

EF|X− X′|, (4)

where X and X′ are independent copies of a random variable from probabilistic forecaster
F and x is the ground truth. The CRPS∗ provides a direct way to compare deterministic
and probabilistic models. In the case of the deterministic forecaster, the CRPS∗ reduces to
Mean Absolute Error (MAE), which is a commonly used point-wise error metric.
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In other words, in a deterministic setting, the CRPS∗ is equivalent to MAE:

MAE(x, x̂) = E|x̂− x|, (5)

where x is the ground truth and x̂ is the point forecast. After the GAN training concluded, we
calculated the CRPS∗ of the ProbCast and the deterministic model. To calculate CRPS∗ for
ProbCast using Equation (4), we sampled it 200 times (100 times for each random variable).

6. Results and Discussion

Table 2 presents the optimal hyperparameters we found for each dataset using our
framework during the experiments, and Table 3 summarizes our experiments’ results
presenting the CRPS∗ of the best deterministic model and the ProbCast for each dataset.

Table 2. List of the hyperparameters alongside their optimal values for each experiment.

Generator
Hyperparameters Electricity Exchange-Rate

Input windows size 174 170
Noise size 303 183
Number of GRU layers 1 1
Number of GRU cells in each layer 119 119

Discriminator
Hyperparameters

Number of GRU layers 3 1
Number of GRU cells in each layer 146 149

In the experiment with the electricity dataset, the ProbCast was more accurate than
the deterministic model despite having an almost identical structure. Furthermore, this
experiment showed that our model can provide precise forecasts for multivariate time-
series even when the number of features is substantial. In the exchange-rate experiment,
the ProbCast outperforms its deterministic predecessor, again despite structural similarities.
We can also observe that our method works well even though the dataset is considerably
smaller in comparison to that of the previous experiment.

Furthermore, it confirms that our framework is capable of transforming a deterministic
model to a probabilistic model that is more accurate than its predecessor. The question
now arises: Considering the sensitivity of GAN to the architecture of its components, why
does employing the deterministic model architecture to define the ProbCast work well,
when it is borrowed from a totally different setup? We think that the deterministic model
provides us an architecture that is capable of learning a good representation from the input
time window. Since the model is trained to learn the mean of possible outcomes, these
representations contain a distinctive indicator of where the target distribution is located.
With the help of these indicators, the MLP block learns to accurately transform the noise
vector z to the probability distribution of future values.

Table 3. The results of the experiments for the deterministic model and the ProbCast reported in CRPS∗.

Dataset Deterministic Model ProbCast

Electricity 235.96 232.00
Exchange-rate 1.04× 10−2 8.66× 10−3

7. Conclusion and Future Works

In this paper, we present ProbCast, a probabilistic model for forecasting one step
ahead of a multivariate time-series. We employ the potential of conditional GAN in a
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learning conditional probability distribution to model the probability distribution of future
values given past values, that is, P(Xt+1|Xt, .., X0).

Furthermore, we propose a framework to efficiently find the optimal architecture of
GAN’s components. This framework builds the probabilistic model upon a deterministic
model to improve its performance. Hence, it enables us to search for the optimal archi-
tecture of a generator and a discriminator separately. Furthermore, it can transform an
existing deterministic model into a probabilistic model with increased precision and better
alignment with the real world.

We assess the performance of our method on two publicly available datasets. The
exchange-rate dataset is a small dataset with few features, while the electricity dataset is
bigger with a considerably larger number of features. We compare the performance of the
ProbCast with its deterministic equivalent. In both experiments, our method outperforms
its counterpart. The results of the experiments demonstrate that the ProbCast can learn
patterns precisely from a small set of data and at the same time, it is capable of figuring out
the dependencies between many features, and can forecast future values accurately in the
presence of a big dataset. Furthermore, the results of the experiments indicate the successful
application of our framework, which paves the way for a systematic and straightforward
approach to exchanging currently used deterministic models with a probabilistic model to
improve accuracy and obtain realistic forecasts.

The promising results of our experiments signify great potential for probabilistic
forecasting using GANs and suggest many new frontiers for further pushing the research
in this direction. For instance, we employ vanilla GAN for our research and there have
been a lot of modifications suggested for improving GANs in recent years. One possible
direction is to apply these modifications and inspect the improvement in the performance
of the ProbCast. The other direction is experimenting with more sophisticated architectures
for the generator and the discriminator. Finally, we only use the knowledge from the
deterministic model to shape the generator. It would be interesting to push this direction
and try to incorporate more knowledge from the deterministic model into the GAN training
process to improve and optimize the probabilistic model.

Data Availability Statement: The datasets used in this study can be found at https://github.com/
laiguokun/multivariate-time-series-data.
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