
Proceeding Paper

A Systematic Review of Python Packages for Time
Series Analysis †

Julien Siebert * , Janek Groß and Christof Schroth

����������
�������

Citation: Siebert, J.; Groß, J.; Schroth,

C. A Systematic Review of Python

Packages for Time Series Analysis.

Eng. Proc. 2021, 5, 22. https://doi.

org/10.3390/engproc2021005022

Academic Editors: Ignacio Rojas,

Fernando Rojas, Luis Javier Herrera

and Hector Pomare

Published: 28 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Fraunhofer Institut for Experimental Software Engineering IESE, Fraunhofer Platz 1,
67663 Kaiserslautern, Germany; janek.gross@iese.fraunhofer.de (J.G.); christof.schroth@iese.fraunhofer.de (C.S.)
* Correspondence: julien.siebert@iese.fraunhofer.de
† Presented at the 7th International Conference on Time Series and Forecasting, Gran Canaria, Spain,

19–21 July 2021.

Abstract: This paper presents a systematic review of Python packages with a focus on time series
analysis. The objective is to provide (1) an overview of the different time series analysis tasks and
preprocessing methods implemented, and (2) an overview of the development characteristics of the
packages (e.g., documentation, dependencies, and community size). This review is based on a search
of literature databases as well as GitHub repositories. Following the filtering process, 40 packages
were analyzed. We classified the packages according to the analysis tasks implemented, the methods
related to data preparation, and the means for evaluating the results produced (methods and access
to evaluation data). We also reviewed documentation aspects, the licenses, the size of the packages’
community, and the dependencies used. Among other things, our results show that forecasting is by
far the most frequently implemented task, that half of the packages provide access to real datasets
or allow generating synthetic data, and that many packages depend on a few libraries (the most
used ones being numpy, scipy and pandas). We hope that this review can help practitioners and
researchers navigate the space of Python packages dedicated to time series analysis. We also provide
an updated list of the reviewed packages online.

Keywords: time series analysis; Python; review

1. Introduction

A time series is a set of data points generated from successive measurements over time.
The analysis of this type of data has found application in many fields, from finance to health,
including the monitoring of computer networks or the environment. The current trend of
reducing the cost of sensors and data storage, the increasing performance of Big Data and
data analysis technologies such as machine learning or data mining, are opening up more
and more possibilities to acquire and analyze temporal data. Moreover, as the number of
time series analysis application cases rises, more and more data scientists, data engineers,
analysts, and software engineers have to use dedicated time series analysis libraries.

In this article, we systematically review Python packages dedicated to time series
analysis. Python is one of the programming languages of choice for data scientists (See the
different surveys performed by Kaggle from 2017 until 2020: https://www.kaggle.com/
kaggle-survey-2020 (accessed on 24 June 2021). Data scientists are not only responsible for
analyzing data; their task is also to ensure that services based on these analyses reach a
sufficient level of maturity to be deployed and maintained in production. In this context,
we review not only the analysis tasks implemented in the packages, but also several
factors external to the tasks themselves, such as which dependencies are used or how big
the community behind the development of the package in question is. Our goal is not
to evaluate the quality of the implementations themselves but to provide a structured
overview that is useful for data scientists confronted with time series analysis (and faced
with having to choose which packages to rely on), the scientific community, and the

Eng. Proc. 2021, 5, 22. https://doi.org/10.3390/22 https://www.mdpi.com/journal/engproc

https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-7696-0046
https://orcid.org/0000-0002-6306-711X
https://orcid.org/0000-0003-0828-4063
https://doi.org/10.3390/22
https://doi.org/10.3390/22
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.kaggle.com/kaggle-survey-2020
https://www.kaggle.com/kaggle-survey-2020
https://doi.org/10.3390/22
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2021005022?type=check_update&version=2


Eng. Proc. 2021, 5, 22 2 of 11

community of Python developers working in this field. This paper is structured as follows:
Related work is introduced in Section 2; the search methodology and the search results are
described in Sections 3 and 4, respectively; threats to validity are discussed in Section 5;
and Section 6 concludes the paper.

2. Related Work

Time series analysis is a broad research field covering many application domains.
The literature contains many reviews, either focusing on analysis tasks and methods (see,
for instance, these reviews on forecasting [1–4], clustering and classification [5–9], anomaly
detection [10–12], changepoint analysis [13–15], pattern recognition [16,17], or dimension-
ality reduction [18]) or focusing on a specific application domain (see, for instance, these
surveys on finance [19], IoT and Industry 4.0 [20–22], or health [23]). Over time, several
formal definitions and reviews of time series analysis tasks have been published; see,
for example [24–26].

However, existing implementations (software packages or libraries) are often listed—
usually in a non-systematic way—in textbooks (like [27,28] for R, or [29] for Python) or gray
literature (for example, Towards Data Science (https://towardsdatascience.com/), KDnuggets
(https://www.kdnuggets.com/) or Machine Learning Mastery (https://machinelearningmastery.
com/), and few papers actually systematically review packages or libraries in a specific
language. For example, Ref. [30] reviewed packages for analyzing animal movement data
in R, and [31] surveyed R packages for hydrology. With respect to Python, we found several
reviews of packages for different domains: social media content scrapping [32], topological
data analysis [33], or data mining [34]. For time series analysis in Python, the only related
work we could find is [35], where the authors review packages focusing on forecasting.

There is, to the best of our knowledge, no systematic review of Python packages for
generic time series analysis.

3. Methodology

We conducted a systematic literature review according to [36]. However, these guide-
lines focus on printed literature, not on software packages. Hence, we adjusted these
methods. Our search process is illustrated in Figure 1. We conducted a search in both
literature databases and code repositories (GitHub). The following sections provide more
details on the different steps of the search itself.

Github search
(IC:1, 2.1, 2.2)

Removing
duplicates

Is a Python
Package?

(IC2.3)

Focuses
on time

series? (IC3)

Literature
search (IC:1, 3)

Checking
Github (IC2.*)

Removing
duplicates +

Snowballing
(IC1, 2.*, 3)

Generic vs
Domain

specific (IC4)
Analysis

115 81 59

104 12

47

5

52

6740

Figure 1. Search and filtering process overview. Edge labels indicate the number of repositories left
after each step.

3.1. Research Questions

We already stated our goal and the context we set for this review in the introduction.
We formalize this context as follows: We want to analyze Python packages dedicated
to time series analysis for the purpose of structuring the available implementations (we
explicitly exclude the purpose of evaluating them) with respect to the implemented time
series analysis tasks from the viewpoint of practitioners in the context of building data-
driven services on top of these implementations. Our research questions are:

https://towardsdatascience.com/
https://www.kdnuggets.com/
https://machinelearningmastery.com/
https://machinelearningmastery.com/


Eng. Proc. 2021, 5, 22 3 of 11

• RQ1 Which time series analysis tasks exist? And which of these are implemented in
maintained Python packages?

• RQ2 How do the packages support the evaluation of the produced results?
• RQ3 How do the packages support their usage, and what insights can we gain to

estimate the durability of a given package and make an informed choice about its
long-term use?

3.2. Inclusion Criteria

To guide our review and filter relevant packages, we defined the following inclusion
criteria (IC): The package should be open source, written in Python, and available on
GitHub (IC1). The package should be actively maintained (last commit within less than
6 months) (IC2.1); it should have more than 100 GitHub stars (IC2.2); and it should be
listed in PyPI (PyPI is the Python Package Index, a repository of software for the Python
programming language, see https://pypi.org/) and be installable via pip (pip is the
Python Package Installer, see https://pip.pypa.io/en/stable/) or conda (conda is a Python
package management system and environment management provided by the Anaconda
distribution, see https://docs.conda.io/en/latest/) (IC2.3). The package should explicitly
target time series analysis (IC3). We excluded packages that can be used for time series
analysis (as building blocks) but whose main purpose is not time series analysis per se
(for example, generic scientific computing packages such as scipy or numpy, packages
dedicated to data manipulation or storage such as pandas, or generic machine learning
or data mining packages such as scikit-learn). Finally, we focused our search on packages
offering methods that tend to be domain-agnostic (IC4) and excluded domain-specific
packages. Domain-specific packages are packages aiming to solve time series analysis in
a specific domain (for example, audio, finance, geoscience, etc.). They usually focus on
specific types and formats of time series and domain related analysis tasks.

3.3. Searching Open-Source Repositories in GitHub

In order to filter GitHub repositories, we selected a list of topics (https://github.
com/topics (accessed on 1 March 2021)), filtered the results by language (Python, IC1),
by number of stars (at least 100, IC2.2), and considered only repositories that were updated
after July 2020 (IC2.1).

In order to select a list of relevant topics, we first manually selected a list of eight
Python packages known to be used in time series analysis (i.e., a seeds set): pandas, numpy,
scipy, statsmodel, ruptures, tsfresh, tslearn, and sktime; as well as a sample of the packages
using the topic “time-series”. We examined the topics used by these packages and then
extended this list of topics with different spellings while manually double-checking their
existence in GitHub. We considered a total of 16 different topics (see Table 1). The first
search led to a total of 115 repositories.

Table 1. List of topics used to conduct the search on GitHub.

time-series time-series-regression signal-processing time-series-classification
time-series-analysis time-series-forecast time-series-visualization time-series-decomposition

time-series-forecasting time-series-data-mining timeseries timeseries-forecasting
time-series-prediction time-series-segmentation timeseries-analysis time-series-clustering

3.3.1. Removing Duplicates

We found 24 unique repositories that were duplicated (i.e., listed in more than one
topic). After duplicate removal, 81 unique repositories remained.

3.3.2. Checking If the Repository Contains the Code of a Python Package

We restricted our search to packages that are referenced by PyPI and can be installed
with pip or conda (IC2.3). Note that the repository name might not reflect the package
name (if one exists). For example, the repository https://github.com/PyWavelets/pywt

https://pypi.org
https://pypi.org/
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/
https://www.scipy.org/
https://numpy.org/
https://pandas.pydata.org/
https://scikit-learn.org
https://github.com/topics
https://github.com/topics
https://github.com/topics/time-series?l=python
https://github.com/topics/time-series-regression?l=python
https://github.com/topics/signal-processing?l=python
https://github.com/topics/time-series-classification?l=python
https://github.com/topics/time-series-analysis?l=python
https://github.com/topics/time-series-forecast?l=python
https://github.com/topics/time-series-visualization?l=python
https://github.com/topics/time-series-decomposition?l=python
https://github.com/topics/time-series-forecasting?l=python
https://github.com/topics/time-series-data-mining?l=python
https://github.com/topics/timeseries?l=python
https://github.com/topics/timeseries-forecasting?l=python
https://github.com/topics/time-series-prediction?l=python
https://github.com/topics/time-series-segmentation?l=python
https://github.com/topics/timeseries-analysis?l=python
https://github.com/topics/time-series-clustering?l=python
https://pypi.org
https://pip.pypa.io/en/stable/
https://docs.conda.io/en/latest/
https://github.com/PyWavelets/pywt


Eng. Proc. 2021, 5, 22 4 of 11

(accessed on 24 June 2021) contains the source code for the package named pywavelets.
The repository https://github.com/angus924/rocket (accessed on 24 June 2021) does not
contain the source code for the Python package rocket. We therefore checked each of
the 81 repositories manually and excluded 22 repositories, which yielded a total of 59
remaining repositories that contain the source code of a Python package.

3.3.3. Including only Packages Focused on Time Series Analysis

Finally, we manually checked whether the focus of the package is time series analysis
(IC3). After exclusion, 47 remaining packages were kept for further analysis.

3.4. Searching Scientific Bibliographic Databases

The search for packages only in a repository might not be sufficient to cover all
existing packages. For example, one of our seed packages (namely tsfresh) was not
uncovered by the search. Hence, we extended our search to existing literature and
software databases (in march 2021). We used the bibliographic databases IEEE Xplore
(https://ieeexplore.ieee.org), ACM Digital Library (https://dl.acm.org/), Web of Sci-
ence (https://www.webofknowledge.com), and Scopus (https://www.scopus.com/),
as well as the Journal of Open Source Software (JOSS) (https://joss.theoj.org/), and Zen-
odo (https://zenodo.org/). For IEEE Xplore, ACM Digital Library, Web of Science, and
Scopus, we limited ourselves to the search string ‘‘Python’’ AND ‘‘time series’’ in
the document title. For the Journal of Open Source Software (JOSS), we first used the
key words ‘‘time series’’ and then filtered the results by language (the query used is:
https://joss.theoj.org/papers/search?q=time+series (accessed on 1 March 2021)). For Zen-
odo, we also used the search string ‘‘Python’’ AND ‘‘time series’’, limited the search
to the software category and removed the duplicates (e.g., different versions of the same
software). The full query for Zenodo is: https://zenodo.org/search?page=1&size=200&q=
%22time%20series%22%20AND%20%22python%22&sort=mostrecent&type=software (ac-
cessed on 1 March 2021). We only included references that matched our inclusion criteria
IC1, IC2.*, and IC3. Table 2 summarizes our search results.

Table 2. Literature search results.

Data Source Number of Hits Number of Included Documents Included References

IEEE Xplore 1 0
ACM Digital Library 2 1 [37]

Web of Science 10 4 [37–40]
Scopus 12 4 [37–40]
JOSS 21 1 [41]

Zenodo 68 6 [42–47]

We manually cross-checked the results obtained from GitHub with the results obtained
by our literature search. Out of the eleven packages resulting from our literature search,
only five repositories were not already in the GitHub search results: tsfresh, neurodsp,
EoN, nolds, and pastas.

3.5. Snowballing

In order to extend our search, we used a snowballing approach. We first manually
reviewed the package documentations in order to find links to other similar packages. Only
two packages—tsfresh (https://tsfresh.readthedocs.io/en/latest/text/introduction.html#
what-else-is-out-there (accessed on 24 June 2021)) and sktime (https://www.sktime.org/
en/latest/related_software.html (accessed on 24 June 2021))—actually document related
packages. Second, we manually reviewed the documentation and the GitHub repositories
of all packages to find related publications. We then reviewed the papers to find new
packages (i.e., we performed a single backward snowballing pass). Out of a total of
79 packages, 15 new packages were included after the snowballing phase, for a total of
67 packages.

https://github.com/angus924/rocket
https://ieeexplore.ieee.org
https://dl.acm.org/
https://www.webofknowledge.com
https://www.scopus.com/
https://joss.theoj.org/
https://zenodo.org/
https://joss.theoj.org/papers/search?q=time+series
https://joss.theoj.org/papers/search?q=time+series
https://zenodo.org/search?page=1&size=200&q=%22time%20series%22%20AND%20%22python%22&sort=mostrecent&type=software
https://zenodo.org/search?page=1&size=200&q=%22time%20series%22%20AND%20%22python%22&sort=mostrecent&type=software
https://github.com/blue-yonder/tsfresh
https://github.com/neurodsp-tools/neurodsp
https://github.com/repos/springer-math/Mathematics-of-Epidemics-on-Networks
https://github.com/repos/springer-math/Mathematics-of-Epidemics-on-Networks
https://github.com/repos/CSchoel/nolds
https://github.com/repos/pastas/pastas'
https://tsfresh.readthedocs.io/en/latest/text/introduction.html#what-else-is-out-there
https://tsfresh.readthedocs.io/en/latest/text/introduction.html#what-else-is-out-there
https://www.sktime.org/en/latest/related_software.html
https://www.sktime.org/en/latest/related_software.html


Eng. Proc. 2021, 5, 22 5 of 11

3.6. Generic vs. Domain-Specific Packages (IC4)

Finally, we classified the packages in two categories: domain-specific and generic.
As previously defined, we consider domain-specific packages to be packages aiming to
solve time series analysis in a specific domain (for example, audio, finance, geoscience, etc.)
and generic packages as those offering methods that tend to be domain-agnostic. Out of the
67 packages, 27 packages were categorized as domain-specific and 40 packages as generic.

3.7. Data Extraction and Categorization

We manually extracted relevant information about the packages from their documen-
tation pages and code. For the categorization, we used an iterative, bottom-up approach.
Two researchers first proposed category definitions and then categorized the packages.
A third researcher was responsible for resolving disagreements. Iterations were performed
until the categories and results were consolidated.

4. Results
4.1. RQ1: Implementation of the Time Series Analysis Tasks

To answer our research question RQ1, we first reviewed the task definitions present in
the literature and then analyzed the 40 packages classified as generic to extract information
about which tasks have been implemented in the packages.

4.1.1. Task Definitions

Time series analysis tasks are formally defined in the literature. Reviews like [24–26,48]
define the following tasks: Indexing (query by content): given a time series and some simi-
larity measure, find the nearest matching time series [24–26]. Clustering: find groups (clus-
ters) of similar time series [24–26,48]. Classification: assign a time series to a predefined
class [24–26,48]. Segmentation (Summarization): create an accurate approximation of a
time series by reducing its dimensionality while retaining its essential features [24–26,48].
Forecasting (Prediction): given a time series dataset up to a given time tn, forecast the next
values [24,25]. Anomaly Detection: find abnormal data points or subsequences (also called
discords) [24,25]. Motif Discovery: find every subsequence (called motif) that appears
recurrently in a time series [24,25,48]. Rules Discovery (Rule Mining): find the rules that
may govern associations between sets of time series or subsequences [25,48].

Esling and Agon also define implementation components [24]: preprocessing (e.g.,
filtering noise, removing outliers, or imputing missing values), representation (e.g., di-
mensionality reduction, finding fundamental shape characteristics), similarity measures,
and indexing schemes.

4.1.2. Implemented Tasks

While analyzing the packages, we found packages explicitly mentioning the tasks
corresponding to our literature review. We found 20 packages explicitly providing forecast-
ing methods (T1), 6 packages providing classification methods (T2), 6 packages providing
clustering methods (T3), 6 packages providing anomaly detection methods (T4), and 4
packages providing segmentation methods (T5). We classified four packages under the
category pattern recognition(T6), encompassing both indexing and motif discovery tasks.
We also classified five packages under the category change point detection (T7), which was
not in our literature review. Finally, we could not find any package explicitly mentioning
the rules discovery task.

Considering the implementation components, we found 4 packages explicitly pro-
viding dimensionality reduction methods (DP1), 17 packages explicitly providing missing
values imputation methods (DP2), 16 packages explicitly providing decomposition methods
(e.g., decomposing time series into trends, seasonal components, or frequency components)
(DP3), 24 packages explicitly providing generic transformation and features generation meth-
ods (DP4), and 7 packages explicitly providing methods for computing similarity measures
(DP5). Table 3 gives an overview of our categorization of the packages.



Eng. Proc. 2021, 5, 22 6 of 11

Table 3. Classification of packages. Tasks: T1 (forecasting), T2 (classification), T3 (clustering), T4 (anomaly detection),
T5 (segmentation), T6 (pattern recognition), T7 (change point detection). Data Preparation (also called implementation
components): DP1 (dimensionality reduction), DP2 (missing values imputation), DP3 (decomposition), DP4 (preprocessing),
DP5 (similarity measures). Evaluation: E1 (model selection, hyperparameter search, feature selection), E2 (metrics and
statistical tests), E3 (visualization). Datasets: D1 (synthetic data generation) and D2 (contains datasets). Documentation: Do1
(dedicated documentation), Do2 (notebook: directly executable (+), present (*)), Do3 (API reference), Do4 (install guide),
Do5 (user guide).

Package
Name

Tasks Data Preparation Evaluation Data Documentation

T1 T2 T3 T4 T5 T6 T7 DP1 DP2 DP3 DP4 DP5 E1 E2 E3 D1 D2 Do1 Do2 Do3 Do4 Do5

arch + + + + + * + + +

atspy + + + + + + + + + +

banpei + + + +

cesium + + * + + +

darts + + + + + + + + + + + +

deeptime + + + + + + + + + + + +

deltapy + + + + + + + + + + +

dtaidistance + + + + + + + +

EMD-signal + + + + + + +

flood-forecast + + + + + + + + + +

gluonts + + + + + + + + + + +

hcrystalball + + + + + + + + + * + + +

hmmlearn + + + + * + +

hypertools + + + + + + * + + +

linearmodels + + * + +

luminaire + + + + + + + + +

matrixprofile + + + + + + + + + + + +

mcfly + + + + + +

neuralprophet + + + + + + * + + +

nolds + + + + + + + +

pmdarima + + + + + + + * + +

prophet + + + + + + * + + +

pyaf + + + + + + + + + + + +

pycwt + + + + + + +

pydlm + + + + + + * + + +

pyFTS + + + + + + + + + +

pyodds + + + + + * + + +

pytorchts + + + + + + + + + + +

pyts + + + + + + + + + + + + * + +

PyWavelets + + + + + * + + +

ruptures + + + + + + + +

scikit-multiflow + + + + + + + + + * + +

seglearn + + + * + + +

sktime + + + + + + + + + + + + + * + + +

sktime-dl + + + + + +

statsmodels + + + + + + + + + + * + + +

stumpy + + + + * + + +

tftb + + + + + + + + + +

tsfresh + + + + + + + + +

tslearn + + + + + + + + + + +

Total 20 6 6 6 4 4 5 4 17 16 24 7 13 23 25 16 19 34 30 28 40 37

T1 T2 T3 T4 T5 T6 T7 DP1 DP2 DP3 DP4 DP5 E1 E2 E3 D1 D2 Do1 Do2 Do3 Do4 Do5

Tasks Data Preparation Evaluation Data Documentation



Eng. Proc. 2021, 5, 22 7 of 11

Forecasting is by far the most frequently implemented task. There is no significant
difference, in terms of number of packages, between the other tasks. However, we need
to be cautious when interpreting these numbers. First, the tasks as formally defined in
the literature might not be explicitly mentioned in the packages documentation or code.
Second, the delineation between a task and the methods used to implement it is sometimes
blurry and context dependent. For example, one can perform change point detection
for the sake of finding time points where some time series properties change and, as a
consequence, raising alarms in a production system, or use it as a preprocessing step for
segmenting a time series into different phases. Another example are forecasting models,
which can also be applied for outlier detection.

4.2. RQ2: Evaluation of the Produced Results

To answer our research question RQ2, we extracted information about the evaluation
of the outcomes produced by the packages. We came up with two main clusters: functions
that facilitate the evaluation itself (E1, E2, E3) and functions for either generating synthetic
data or downloading existing datasets (D1, D2). We found 13 packages explicitly providing
methods for model selection, hyperparameter search, or feature selection (E1), 20 packages
explicitly providing evaluation metrics and statistical tests (E2), and 25 packages providing
visualization methods (E3). Concerning the data, we found 16 packages explicitly providing
functions for generating synthetic time series data (D1), and 19 packages providing access
to time series datasets (D2). A large majority of the packages provide a way to evaluate the
results produced. Only 4 packages have not been classified in any of the E or D classes.

4.3. RQ3: Package Usage and Community

To answer our research question RQ3, we extracted information about the documenta-
tion, the dependencies, and the community supporting the packages. For instance, GitHub
provides many statistics about a repository (e.g., the number of stars, forks, issues) that can
be used to get a first idea of the liveliness of the different packages. We used the number of
GitHub stars and forks to estimate the community behind each package. Figure 2a shows
the distribution of stars and forks for all 40 packages. Another piece of information that is
relevant to practitioners are the licenses under which the implementations are available.
Figure 2b shows the distribution of the licenses used among the 40 repositories.

0 5 10 15 20 25 30 35 40
Package rank

102

103

104

St
ar

s (
lo

g 
sc

al
e)

prophet (12256, 3506)
statsmodels (5931, 2144)
tsfresh (5326, 846)
sktime (3467, 426)
hmmlearn (2185, 633)

stars
forks

101

102

103

Fo
rk

s (
lo

g 
sc

al
e)

(a)

0 2 4 6 8 10
Number of repositories

GNU Lesser General Public License v3.0

BSD 2-Clause "Simplified" License

GNU General Public License v3.0

None

Apache License 2.0

BSD 3-Clause "New" or "Revised" License

Other

MIT License

Lic
en

se
s

1

2

2

3

5

8

9

10

(b)

Figure 2. (a) Distribution of stars and forks for all 40 repositories (log scale). The repositories
are ranked by the number of stars, in descending order. (b) Distribution of licenses (number of
repositories per license). None means that no license information was available from GitHub directly.

We also investigated the dependencies used by each of the selected 40 packages. We
used the Python program johnnydep (https://pypi.org/project/johnnydep/ (accessed on
24 June 2021)) to automatically collect the dependencies without installing the packages
directly. We only looked at direct dependencies required for the installation of the package.
We did not consider specific installation options such as dev or test. We did not search for
all dependencies recursively. Here is an example of how we called the program johnnydep

https://pypi.org/project/johnnydep/


Eng. Proc. 2021, 5, 22 8 of 11

PACKAGENAME --fields=ALL --no-deps --output-format=json. The dependencies of two
packages could not be retrieved automatically (cesium and deeptime). We also manually
cross-checked the dependencies and filled in the missing ones. Table 4 shows which
dependencies are used the most by the packages.

Table 4. Ranking of the most frequently used dependencies.

Package Name Used Rank Package Name Used Rank

numpy 37 1 torch 6 8
scipy 30 2 numba 6 8

pandas 23 3 cython 6 8
scikit-learn 21 4 tensorflow 5 9
matplotlib 16 5 seaborn 4 10

statsmodels 8 6 future 4 10
tqdm 7 7 joblib 4 10

Almost all packages (37) depends upon numpy. The top 5 dependencies are numpy,
scipy (scientific computing), pandas (data manipulation), scikit-learn (machine learning),
and matplotlib (visualization).

Finally, we investigated five documentation aspects (Do1-Do5). We found that 30 pack-
ages provide a separate documentation page (Do1). The other ten packages use the
README of the repository file as documentation. 18 packages provide notebooks directly
executable without installation via a link to either mybinder.org (https://mybinder.org/)
or Google Colab (https://colab.research.google.com/ (accessed on 24 June 2021)) (Do2 +),
12 packages provide stand-alone notebook files to be downloaded (Do2 *), and 10 packages
do not provide any notebook file at all. 28 packages provide an API reference (Do3). All
packages provide an installation page (Do4) and almost all packages (38) provide user
guides in the form of static examples or tutorials.

5. Discussion and Threats to Validity

In this section, we discuss the choices we made and that may affect the validity of
this review.

This review focused on GitHub. Gitlab and Sourceforge were checked manually,
but we decided not to include them as sources due to the insufficient number of results.

We limited ourselves to packages with at least 100 stars. This somehow arbitrary
limit led us to exclude packages with a number of stars close to 100 (e.g., the stingray
package with 93 stars at the time of the search). We excluded packages that were not
maintained but might have been relevant for practitioners. An example is the pyflux
package (forecasting). We also excluded repositories that are not Python packages. This
led us to discard interesting repositories like ad_examples (which provides state-of-the-art
anomaly detection methods) and many repositories containing code scripts associated with
scientific papers.

Concerning the search process, we used a mix of literature databases and GitHub top-
ics together with a snowballing approach to find relevant packages. The reason forthis was
that several known packages could not be found automatically. For example, the package
cesium does not list any topic and therefore was not found in our first GitHub search. It
was found after snowballing. Another example is tsfresh, which was missing in the first
GitHub search and was found in the literature search. The problem may be the language
filter (strictly Python), as tsfresh lists some of the topics we searched for (“time-series”).

We tried to automate some of the tasks (e.g., filtering repositories that contain Python
packages or finding the dependencies), using both PyPI and GitHub API, or the johnnydep
tool. There were false positives and false negatives. This led us to manually cross check the
results obtained from our automated search.

Whether a package focuses on time series analysis or not can sometimes be fuzzy.
For example, we decided to leave the topic of survival analysis out of this review. We

https://numpy.org/
https://www.scipy.org/
https://www.scipy.org/
https://pandas.pydata.org/
https://scikit-learn.org
https://matplotlib.org
https://mybinder.org/
https://colab.research.google.com/
https://github.com/StingraySoftware/stingray
https://github.com/RJT1990/pyflux
https://github.com/shubhomoydas/ad_examples
https://github.com/cesium-ml/cesium
https://github.com/cesium-ml/cesium
https://github.com/blue-yonder/tsfresh
https://github.com/blue-yonder/tsfresh
https://pypi.org


Eng. Proc. 2021, 5, 22 9 of 11

initially found two packages: lifelines and scikit-survival. The same applies to the boundary
between generic and domain-specific packages. We took a conservative approach to keep
our survey sufficiently focused.

As already mentioned above, the definition of what should be regarded as a task
vs. an “implementation component” is difficult, as a strict boundary may not even exist.
Moreover, it is sometimes not clear what methods the packages provide without actually
installing them and testing them. Indeed, the documentation might not be complete or
the vocabulary used may differ from one package to another. One solution was to check
the code itself. Here again, the search strings used play an important role in avoiding
false negatives.

6. Conclusions

This paper presented a systematic review of Python packages dedicated to time series
analysis. The search process led to a total of 40 packages that were analyzed further.
We proposed a categorization of the packages based on the analysis tasks implemented,
the methods related to data preparation, the means for evaluating the results produced,
and the kind of documentation present, and also looked at some development aspects
(licenses, stars, dependencies). We also discussed the search process with its possible
bias and the challenges we encountered while searching for and reviewing the relevant
packages. The scope of this survey does, however, not include any evaluation of the
implementations or the results they would produce, for example, on benchmark datasets.
We hope that this review can help practitioners and researchers navigate the space of
Python packages dedicated to time series analysis. Since the packages will evolve, we
plan to maintain an updated list of the reviewed packages online at https://siebert-julien.
github.io/time-series-analysis-python/.

Author Contributions: J.S. designed the search process. All authors contributed equally to the results
evaluation and to the manuscript. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors want to thank Anna Maria Vollmer and Markus Löning for their
valuable feedback.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hendikawati, P.; Subanar; Abdurakhman; Tarno. A survey of time series forecasting from stochastic method to soft computing.

J. Phys. Conf. Ser. 2020, 1613, 012019. [CrossRef]
2. Mahalakshmi, G.; Sridevi, S.; Rajaram, S. A survey on forecasting of time series data. In Proceedings of the 2016 International

Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE’16), Kovilpatti, India, 7–9 January 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 1–8. [CrossRef]

3. Panigrahi, S.; Behera, H.S. Fuzzy Time Series Forecasting: A Survey. In Computational Intelligence in Data Mining; Advances in
Intelligent Systems and Computing Ser; Behera, H.S., Nayak, J., Naik, B., Pelusi, D., Eds.; Springer: Singapore, 2020; pp. 641–651.

4. Tealab, A. Time series forecasting using artificial neural networks methodologies: A systematic review. Future Comput. Inform. J.
2018, 3, 334–340. [CrossRef]

5. Abanda, A.; Mori, U.; Lozano, J.A. A review on distance based time series classification. Data Min. Knowl. Discov. 2019,
33, 378–412. [CrossRef]

6. Aghabozorgi, S.; Seyed Shirkhorshidi, A.; Ying Wah, T. Time-series clustering—A decade review. Inf. Syst. 2015, 53, 16–38.
[CrossRef]

7. Bagnall, A.; Lines, J.; Bostrom, A.; Large, J.; Keogh, E. The great time series classification bake off: A review and experimental
evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 2017, 31, 606–660. [CrossRef] [PubMed]

https://github.com/CamDavidsonPilon/lifelines
https://github.com/sebp/scikit-survival
https://siebert-julien.github.io/time-series-analysis-python/
https://siebert-julien.github.io/time-series-analysis-python/
http://doi.org/10.1088/1742-6596/1613/1/012019
http://dx.doi.org/10.1109/ICCTIDE.2016.7725358
http://dx.doi.org/10.1016/j.fcij.2018.10.003
http://dx.doi.org/10.1007/s10618-018-0596-4
http://dx.doi.org/10.1016/j.is.2015.04.007
http://dx.doi.org/10.1007/s10618-016-0483-9
http://www.ncbi.nlm.nih.gov/pubmed/30930678


Eng. Proc. 2021, 5, 22 10 of 11

8. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min.
Knowl. Discov. 2019, 33, 917–963. [CrossRef]

9. Susto, G.A.; Cenedese, A.; Terzi, M. Time-Series Classification Methods: Review and Applications to Power Systems Data. In Big
Data Application in Power Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 179–220. [CrossRef]

10. Ayadi, A.; Ghorbel, O.; Obeid, A.M.; Abid, M. Outlier detection approaches for wireless sensor networks: A survey. Comput.
Netw. 2017, 129, 319–333. [CrossRef]

11. Cook, A.A.; Misirli, G.; Fan, Z. Anomaly Detection for IoT Time-Series Data: A Survey. IEEE Internet Things J. 2020, 7, 6481–6494.
[CrossRef]

12. Wu, H.S. A survey of research on anomaly detection for time series. In Proceedings of the 2016 13th International Computer
Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 16–18 December
2016; Institute of Electrical and Electronics Engineers, Inc.: Piscataway, NJ, USA, 2016; pp. 426–431. [CrossRef]

13. Aminikhanghahi, S.; Cook, D.J. A Survey of Methods for Time Series Change Point Detection. Knowl. Inf. Syst. 2017, 51, 339–367.
[CrossRef]

14. Sharma, S.; Swayne, D.A.; Obimbo, C. Trend analysis and change point techniques: A survey. Energy Ecol. Environ. 2016,
1, 123–130. [CrossRef]

15. Truong, C.; Oudre, L.; Vayatis, N. Selective review of offline change point detection methods. Signal Process. 2020, 167, 107299.
[CrossRef]

16. Torkamani, S.; Lohweg, V. Survey on time series motif discovery. WIREs Data Min. Knowl. Discov. 2017, 7, e1199. [CrossRef]
17. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep Learning for Sensor-based Activity Recognition: A Survey. Pattern Recognit.

Lett. 2018. [CrossRef]
18. Badhiye, S.S. A Review on Time Series Dimensionality Reduction. HELIX 2018, 8, 3957–3960. [CrossRef]
19. Sezer, O.B.; Gudelek, M.U.; Ozbayoglu, A.M. Financial time series forecasting with deep learning: A systematic literature review:

2005–2019. Appl. Soft Comput. 2020, 90, 106181. [CrossRef]
20. Lepenioti, K.; Bousdekis, A.; Apostolou, D.; Mentzas, G. Prescriptive analytics: Literature review and research challenges. Int. J.

Inf. Manag. 2020, 50, 57–70. [CrossRef]
21. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep Learning for IoT Big Data and Streaming Analytics: A Survey.

IEEE Commun. Surv. Tutor. 2018, 20, 2923–2960. [CrossRef]
22. Zhao, Y.; Zhang, C.; Zhang, Y.; Wang, Z.; Li, J. A review of data mining technologies in building energy systems: Load prediction,

pattern identification, fault detection and diagnosis. Energy Built Environ. 2019. [CrossRef]
23. Zeger, S.L.; Irizarry, R.; Peng, R.D. On time series analysis of public health and biomedical data. Annu. Rev. Public Health 2006,

27, 57–79. [CrossRef]
24. Esling, P.; Agon, C. Time-series data mining. ACM Comput. Surv. 2012, 45, 1–34. [CrossRef]
25. Fakhrazari, A.; Vakilzadian, H. A survey on time series data mining. In Proceedings of the 2017 IEEE International Conference

on Electro Information Technology (EIT), Lincoln, NE, USA, 14–17 May 2017; pp. 476–481. [CrossRef]
26. Keogh, E.; Kasetty, S. On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration. Data Min.

Knowl. Discov. 2003, 7, 349–371. [CrossRef]
27. Cowpertwait, P.S.P.; Metcalfe, A.V. Introductory Time Series with R; Use R!; Springer: Dordrecht, The Netherlands; New York, NY,

USA, 2009.
28. Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications: With R Examples, 4th ed.; Springer: Cham, Switzerland, 2017.
29. Nielsen, A. Practical Time Series Analysis: Prediction with Statistics and Machine Learning, 1st ed.; O’Reilly: Beijing, China, 2019.
30. Joo, R.; Boone, M.E.; Clay, T.A.; Patrick, S.C.; Clusella-Trullas, S.; Basille, M. Navigating through the r packages for movement. J.

Anim. Ecol. 2020, 89, 248–267. [CrossRef]
31. Slater, L.J.; Thirel, G.; Harrigan, S.; Delaigue, O.; Hurley, A.; Khouakhi, A.; Prosdocimi, I.; Vitolo, C.; Smith, K. Using R in

hydrology: A review of recent developments and future directions. Hydrol. Earth Syst. Sci. 2019, 23, 2939–2963. [CrossRef]
32. Thivaharan, S.; Srivatsun, G.; Sarathambekai, S. A Survey on Python Libraries Used for Social Media Content Scraping. In

Proceedings of the International Conference on Smart Electronics and Communication (ICOSEC 2020), Trichy, India, 10–12
September 2020. [CrossRef]

33. Ray, J.; Trovati, M. A survey of topological data analysis (TDA) methods implemented in python. Lect. Notes Data Eng. Commun.
Technol. 2018, 8, 594–600.

34. Stancin, I.; Jovic, A. An overview and comparison of free Python libraries for data mining and big data analysis. In Proceedings
of the 2019 42st International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 977–982. [CrossRef]

35. Januschowski, T.; Gasthaus, J.; Wang, Y. Open-Source Forecasting Tools in Python. Foresight Int. J. Appl. Forecast. 2019, 55, 20–26.
36. Kitchenham, B.; Brereton, P. A systematic review of systematic review process research in software engineering. Inf. Softw.

Technol. 2013, 55, 2049–2075. [CrossRef]
37. Burns, D.M.; Whyne, C.M. Seglearn: A Python Package for Learning Sequences and Time Series. J. Mach. Learn. Res. 2018, 19,

3238–3244.
38. Christ, M.; Braun, N.; Neuffer, J.; Kempa-Liehr, A.W. Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests

(tsfresh—A Python package). Neurocomputing 2018, 307, 72–77. [CrossRef]

http://dx.doi.org/10.1007/s10618-019-00619-1
http://dx.doi.org/10.1016/B978-0-12-811968-6.00009-7
http://dx.doi.org/10.1016/j.comnet.2017.10.007
http://dx.doi.org/10.1109/JIOT.2019.2958185
http://dx.doi.org/10.1109/ICCWAMTIP.2016.8079887
http://dx.doi.org/10.1007/s10115-016-0987-z
http://dx.doi.org/10.1007/s40974-016-0011-1
http://dx.doi.org/10.1016/j.sigpro.2019.107299
http://dx.doi.org/10.1002/widm.1199
http://dx.doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.29042/2018-3957-3960
http://dx.doi.org/10.1016/j.asoc.2020.106181
http://dx.doi.org/10.1016/j.ijinfomgt.2019.04.003
http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1016/j.enbenv.2019.11.003
http://dx.doi.org/10.1146/annurev.publhealth.26.021304.144517
http://dx.doi.org/10.1145/2379776.2379788
http://dx.doi.org/10.1109/EIT.2017.8053409
http://dx.doi.org/10.1023/A:1024988512476
http://dx.doi.org/10.1111/1365-2656.13116
http://dx.doi.org/10.5194/hess-23-2939-2019
http://dx.doi.org/10.1109/ICOSEC49089.2020.9215357
http://dx.doi.org/10.23919/MIPRO.2019.8757088
http://dx.doi.org/10.1016/j.infsof.2013.07.010
http://dx.doi.org/10.1016/j.neucom.2018.03.067


Eng. Proc. 2021, 5, 22 11 of 11

39. Alexandrov, A.; Benidis, B.; Bohlke-Schneider, M.; Flunkert, V.; Gasthaus, J.; Januschowski, T.; Maddix, D.C.; Rangapuram, S.;
Salinas, D.; Schulz, J.; et al. GluonTS: Probabilistic and Neural Time Series Modeling in Python. J. Mach. Learn. Res. 2020, 21, 1–6.

40. Faouzi, J.; Janati, H. Pyts: A python package for time series classification. J. Mach. Learn. Res. 2020, 21, 1–6. Available online:
http://jmlr.org/papers/v21/19-763.html (accessed on 24 June 2021).

41. Law, S. STUMPY: A Powerful and Scalable Python Library for Time Series Data Mining. J. Open Source Softw. 2019, 4, 1504.
[CrossRef]

42. Collenteur, R.; Bakker, M.; Caljé, R.; Schaars, F. Pastas: Open-Source Software for the Analysis of Hydrogeological Time Series.
Available online: https://zenodo.org/record/4277358 (accessed on 24 June 2021)

43. Miller, J.C.; Ting, T. EoN (Epidemics on Networks): A Fast, Flexible Python Package for Simulation, Analytic Approximation,
and Analysis of Epidemics on Networks. 2020. Available online: https://zenodo.org/record/3572756 (accessed on 24 June 2021).

44. Schölzel, C. Nonlinear Measures for Dynamical Systems. Available online: https://zenodo.org/record/3814723 (accessed on
24 June 2021).

45. Silva, P.C.D.L.E.; Júnior, C.A.S.; Alves, M.A.; Silva, R.C.P.; Vieira, G.L.; Lucas, P.D.O.E.; Sadaei, H.J.; Guimarães, F.G.
PYFTS/pyFTS: Stable Version 1.6. 2019. Available online: https://zenodo.org/record/2669398 (accessed on 24 June 2021).

46. Snow, D.; Baltacı, F. firmai/atspy: Zenodo. 2020. Available online: https://zenodo.org/record/4270168 (accessed on 24 June
2021).

47. Team, T.O.D. Obspy 1.0.0. 2016. Available online: https://zenodo.org/record/46151 (accessed on 24 June 2021).
48. Fu, T.C. A review on time series data mining. Eng. Appl. Artif. Intell. 2011, 24, 164–181. [CrossRef]

http://jmlr.org/papers/v21/19-763.html
http://dx.doi.org/10.21105/joss.01504
https://zenodo.org/record/4277358
https://zenodo.org/record/3572756
https://zenodo.org/record/3814723
https://zenodo.org/record/2669398
https://zenodo.org/record/4270168
https://zenodo.org/record/46151
http://dx.doi.org/10.1016/j.engappai.2010.09.007

	Introduction
	Related Work
	Methodology
	Research Questions
	Inclusion Criteria
	Searching Open-Source Repositories in GitHub
	Removing Duplicates
	Checking If the Repository Contains the Code of a Python Package
	Including only Packages Focused on Time Series Analysis

	Searching Scientific Bibliographic Databases
	Snowballing
	Generic vs. Domain-Specific Packages (IC4)
	Data Extraction and Categorization

	Results
	RQ1: Implementation of the Time Series Analysis Tasks
	Task Definitions
	Implemented Tasks

	RQ2: Evaluation of the Produced Results
	RQ3: Package Usage and Community

	Discussion and Threats to Validity
	Conclusions
	References

