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Abstract: Long-run forecasts of telecommunication services’ diffusion play an important role in
policy, regulation, planning and portfolio decisions. Forecasting diffusion of telecommunication
technologies is usually based on S-shaped models, mainly due to their accurate long-term predictions.
Yet, the use of these models does not allow the introduction of risk in the forecast. In this paper, a
methodology for the introduction of uncertainty in the underlying calculations is presented. It is
based on the calibration of an Ito stochastic process and the generation of possible forecast paths
via Monte Carlo Simulation. Results consist of a probabilistic distribution of future demand, which
constitutes a risk assessment of the diffusion process under study. The proposed methodology can
find applications in all high-technology markets, where a diffusion model is usually applied for
obtaining future forecasts.

Keywords: diffusion modelling; time-series forecasting; forecast uncertainty; Monte Carlo Simula-
tion; risk estimation

1. Introduction

The study of the diffusion process of telecommunication services is of paramount
importance in understanding the factors influencing the development of telecommunica-
tion networks. For telecommunication service operators, it provides the basis for strategic
decisions, such as technology selection and capacity expansion. Moreover, the derived
knowledge can be used by policy makers and regulators for shaping market competition.

Based on the findings in [1], telecommunications’ demand modelling and forecasting
usually involves the use of traditional diffusion theory. Most commonly used diffusion
models include the Bass model, the Fisher–Pry model, the Gompertz models and some
representatives of the logistic variants. With respect to studies not mentioned, examples of
this literature include the work of [2–5] and more recently [6,7].

These S-shaped diffusion models accurately capture the telecommunications’ market
expectations, but do not provide measures for the inherent uncertainty in their forecasts [1].
Consequently, the decision maker is deprived of the ability to estimate the risk (systematic
and/or idiosyncratic based on the diffusion process under study) inherent to the market
under study, as well as to investigate the link between this risk and the market’s competitive
environment.

To cope with this shortcoming, the literature suggests the use of stochastic models,
e.g., Geometric Brownian Motion (GBM). In [8], an error factor with normal distribution
was used to model uncertainty. In [9], GBM is described as a mathematical tool with
the capability of calibrating demand volatility very reasonably and accurately. In [10],
GBM was indicated as a good first approximation for uncertainties. In [11], a GBM
process with a linear expected growth rate was used to model the stochastic nature of
the diffusion process. In [12], GBM modelling was applied to generate sample paths of
demand in the semiconductor manufacturing industry. In the telecommunications’ market,
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the relevant literature is quite limited; in [13], four datasets in the energy, transportation,
and telecommunication sectors were analyzed using GBM.

Despite their ability to capture and communicate forecast uncertainties better to
stakeholders, the above stochastic models have also received some criticism; in [14], it was
pointed out that stochastic models cannot capture demand trends as good as S-shaped
models. For GBM applications, this can be accounted for by the constant drift rate, which
varies significantly from the dynamic growth exhibited in new product demand [11]. To
tackle this issue, in [15], a calibrated GBM model with spline interpolation was proposed to
address the problem of stochasticity in forecasting diffusion of a new product with scarce
historical data; the drift parameter is calculated from the forecasted data provided by a
best-fit polynomial model and the volatility parameter is considered equal to the root mean
square error (RSME) of the best-fit function found for the drift. This approach enables the
stochastic model to capture the dynamics of the product’s life cycle; yet, it should not be
used in forecasting because of the polynomial model’s prowess to overfitting.

To consider both dynamic growth and possible stochasticity in the future demand for
telecommunication services, this study suggests the use of an S-curve calibrated generalized
Brownian motion—Ito stochastic process. Dynamic growth is captured by a variable
drift parameter following the diffusion rate provided by the best-fitting S-shaped model.
Furthermore, the diffusion uncertainty is modelled through the volatility parameter, which
is defined as the standard deviation of the percentage error of the best-fitting S-shaped
model. Since an Ito process is used, the proposed model is valid provided the actual
diffusion log changes follow a normal distribution.

The proposed approach offers significant advantages in telecommunications’ demand
modelling and forecasting over the existing literature. S-curve diffusion modelling has
proven its ability to accurately capture growth trends in telecommunication services. This
ability is incorporated in the proposed stochastic model by the variable growth rate of the
best-fitting S-curve model, which serves as the drift parameter of the model. The main
advantage, though, lies with the accurate estimation of the volatility incorporated in the
diffusion process under study; the better determination of the data drift highlights the
changes in data due to uncertainty, thus allowing for a better determination of diffusion
uncertainty. If the diffusion process of an entire market is examined, the calculated volatility
reflects the overall market uncertainty, whereas, if the diffusion process of a specific
technology on a provider basis is examined, the calculated volatility corresponds to the
overall technology uncertainty the provider experiences.

The proposed stochastic process can be used in telecommunications’ demand fore-
casting. Monte Carlo Simulation is deployed to provide the diffusion forecast. Depending
on the diffusion process under study, through this analysis, the estimation of both the
systematic and the idiosyncratic risk inherent in the telecommunications’ services market
may also be provided. Moreover, when a specific technology for both the overall market
and a provider are examined, through a standard cointegration analysis, the effect of the
overall market uncertainty to the provider uncertainty may also be determined.

To indicate the dynamics of the proposed method, a real-world example, based
on the diffusion of the mobile market in Greece, is provided. Monte Carlo Simulation
outputs of the calibrated stochastic process are compared with the equivalent results from
a standard GBM model. Results validate the enhanced uncertainty measurement and
diffusion forecast hypothesis.

To conclude, this paper addresses the uncertainty determination problem in the
telecommunications’ market diffusion processes and the introduction of this uncertainty
in diffusion forecasting. The latter allows the estimation of the idiosyncratic and/or the
systematic risk inherent in the diffusion process under study. In addition, it provides a
way to estimate the effect of the overall market uncertainty to the diffusion of a specific
firm/technology.
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The rest of the paper is organized as follows. Section 2 provides an overview of the
proposed model. Section 3 presents the results, after its application in a telecommunication
market paradigm. Finally, Section 4 concludes.

2. Forecasting Telecommunications’ Services Diffusion under Uncertainty

The aim of this study is to propose a statistical and simulation-based methodology
for forecasting the demand of a telecommunication service in an uncertain and dynamic
environment. This methodology builds upon the use of a calibrated generalized Brownian
motion—Ito stochastic process. The steps taken in performing the proposed forecasting
methodology are represented in Figure 1.
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As can be seen in Figure 1, the proposed methodology follows a four-step proce-
dure, comprising Data Gathering and Validation, the Best-fit S-curve Model Selection, the
Stochastic Model Calibration and the Forecasting and Risk Valuation. Details of each step
are provided below.

2.1. Data Gathering and Validation

The first step of the methodology includes the respective data collection about the
telecommunication service diffusion and the validation of this data for use.

Since an Ito process is used, the proposed model is valid provided the actual diffusion
log changes follow a normal distribution. Consequently, a normality test has to be deployed
to determine if the data set is well-modeled by a normal distribution.

2.2. Best-Fit S-Curve Model Selection

The second step of the methodology includes the selection of the S-curve model that
best describes the demand evolution of the diffusion process under study.

The S-shaped diffusion models can be derived from the differential equation repre-
sented in (1).

dN(t)
dt

= δ × f (N(t))× [K − N(t)] (1)

where N(t) represents the penetration estimation, K is the saturation level and δ is the
coefficient of diffusion.

From (1), it can be seen that for a diffusion model to produce an estimation, the satura-
tion level K and diffusion coefficient δ have to be determined. While the determination of
the saturation level K is most of the times a more straightforward procedure, the diffusion
coefficient involves the estimation of model-specific parameters through data-fitting proce-
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dures, e.g., in the Bass model, described in (2), in which the diffusion coefficient involves
the determination of parameter p—the coefficient of innovation—and parameter q—the
coefficient of imitation.

A(t) =
m × (p + q)2

p
× e−(p+q)t[(

q
p

)
e−(p+q)t + 1

] (2)

where m is the market potential, p is the coefficient of innovation and q is the coefficient
of imitation.

The estimation of the parameters of the models under evaluation may be achieved
through data fitting, with the use of dedicated software. It should be considered that for an
S-curve model to produce valid results, a considerable amount of data is required.

Following the estimation of the required parameters, the selection of the best-fitting
model is accomplished with the use of forecast accuracy measures, such as the Mean
Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). Failure to select
the S-curve model that best captures the diffusion process dynamics will have a strong
impact on the validity of the results of the proposed methodology.

2.3. Stochastic Model Calibration

The proposed model is based on a generalized Brownian motion—Ito stochastic
process. The latter was chosen because, unlike GBM, it incorporates drift and volatility
coefficients that are functions of the current state and time.

The Ito process is represented by (3):

dx = a(x, t)dt + b(x, t)dz (3)

where dz is the increment of a Wiener process and a(x,t) and b(x,t) are known (nonrandom)
functions serving as the drift and volatility parameters, respectively.

Equation (3) defines two terms that affect the calculated estimation. The first term
defines that at each time period, the estimated value will drift up by the expected market
growth rate. The second term indicates that a random value, scaled from the volatility
coefficient, will be added to or subtracted from the drift value. Hence, estimations fol-
low a series of steps, which result from the interactions of the above two terms and are
independent of past estimations (a Markov process property).

When stochastic models are used for diffusion modelling, their parameters are esti-
mated based on historical data, e.g., [16]. In few cases, these parameters are considered
variable and are calibrated based on existing data, e.g., [15]. Under the proposed methodol-
ogy, the drift coefficient of the Ito process is calibrated based on the diffusion rate provided
by the best-fitting S-shaped model of Step 1, whereas the volatility coefficient is calculated
after the extraction of the drift trend of the data.

2.3.1. Drift Coefficient Calibration

To incorporate the market dynamic growth into the Ito stochastic process, the drift
coefficient a(x,t) is set equal to the variable market growth rate provided by the best-
fitting S-shaped diffusion model. For S-shaped models providing cumulative penetration
estimation, like the logistic family of models, this growth rate may be calculated at any
given time period t following (4),

µ(t) =
N(t)− N(t − 1)

N(t − 1)
(4)

whereas for models providing spot penetration growth, like the Bass model, the growth
rate may be calculated using (5).

µ(t) =
∑t

0 N(t)− ∑t−1
0 N(t − 1)

∑t−1
0 N(t − 1)

=
N(t)

∑t−1
0 N(t − 1)

(5)
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Hence, the proposed Ito process, after calibration, is represented by (6):

dx = µ(t)dt + b(x, t)dz (6)

It should be noted that in the absence of volatility (b(x,t) = 0), the results of (6) converge
to the results provided by (1), the S-shaped diffusion model that was used for the forecast.

2.3.2. Volatility Coefficient Estimation

Similar to the work proposed in [15], following the Ito process drift coefficient cali-
bration, the volatility coefficient has to be estimated. Under the proposed methodology,
volatility is defined as the standard deviation of the percentage error of the best-fitting
S-shaped model for µ(t). In this way, the volatility coefficient b(x,t) will remain constant
throughout the evaluation period and depends on the residuals of the S-curve fitting
process. These residuals are considered to be a direct result of the inherent uncertainty
in the diffusion process under study. Therefore, the better determination of the data drift
highlights the changes in data due to uncertainty, thus allowing for a better determination
of diffusion uncertainty.

Moreover, based on this view of the residuals of the S-curve fitting process, when a
specific technology for both the overall market and a provider are examined, the effect of
the overall market uncertainty to the provider uncertainty may also be determined. This
may be achieved through a standard cointegration analysis, provided that both residual
data series are integrated of the same order.

2.4. Forecasting and Risk Valuation

Given the best-fitted function to the demand growth as well as the value obtained for
the volatility coefficient, the targeted stochastic differential equation is made based on (7).

dx = µ(t)dt + bdz (7)

To generate possible demand forecasts, Monte Carlo Simulation is deployed. Outputs
include the probabilistic distribution of the future demand for the telecommunication
service under evaluation, at a specific time t. It is noted that even though there is no
constrain for the forecast period, the larger this period, the higher the data deviations due
to the underlying uncertainty.

Besides the generation of future diffusion forecasts, Monte Carlo Simulation may be
used to estimate the risk inherent to the diffusion process. The calculated probabilistic
distribution constitutes a risk assessment of the forecasted diffusion of the telecommuni-
cation service under study. If the diffusion process of an entire market is examined, the
calculated volatility reflects the overall market uncertainty, thus enabling the estimation of
the market’s systematic risk. On the contrary, if the diffusion process of a specific technol-
ogy on a provider basis is examined, the calculated volatility corresponds to the overall
technology uncertainty the provider experiences. This enables the estimation of the total
technology risk for the provider, which includes both the systematic and the idiosyncratic
technology risk.

Following the risk estimation, the results may be compared to various levels of risk
tolerance. This can help telecommunication providers to adjust their strategy regarding
technology selection and capacity expansion. Moreover, the derived knowledge can be
used by policy makers and regulators for shaping market competition. This concludes the
proposed method.

3. Insights from the Greek Mobile Telecommunications Market

To indicate the dynamics of the proposed methodology, a real-world example, based
on the diffusion of the mobile market in Greece, is provided.

In its current state, the Greek mobile telecommunications market offers a subscriber
the ability to choose between four competing technologies, 2–2.5G, 3G, 4G and 5G. After
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the introduction of VoLTE, all four technologies may be used for both telephony and data
services. These services are included in either prepaid or postpaid packages and are pro-
vided by three companies, namely, CosmOTE, Vodafone and Wind, with an expected new
entrant, Forthnet. The market is regulated by the National Telecommunications and Post
Commission (EETT, https://www.eett.gr (accessed on 28 May 2021)). The responsibility for
drafting legislation is retained by the Greek Ministry for Transport and Communications
(YME, www.yme.gr (accessed on 28 May 2021)).

The data used in the analysis were published by EETT. These involve the number of
active subscriptions per mobile telecommunications service provider from 1998, when the
first mobile telecommunications networks were deployed in Greece, to 2019. These data
for the incumbent operator CosmOTE and the total market are presented in Figure 2.

Eng. Proc. 2021, 5, 13 6 of 10 
 

 

3. Insights from the Greek Mobile Telecommunications Market 
To indicate the dynamics of the proposed methodology, a real-world example, based 

on the diffusion of the mobile market in Greece, is provided. 
In its current state, the Greek mobile telecommunications market offers a subscriber 

the ability to choose between four competing technologies, 2–2.5G, 3G, 4G and 5G. After 
the introduction of VoLTE, all four technologies may be used for both telephony and data 
services. These services are included in either prepaid or postpaid packages and are pro-
vided by three companies, namely, CosmOTE, Vodafone and Wind, with an expected new 
entrant, Forthnet. The market is regulated by the National Telecommunications and Post 
Commission (EETT, https://www.eett.gr (accessed on 28 May 2021)). The responsibility 
for drafting legislation is retained by the Greek Ministry for Transport and Communica-
tions (YME, www.yme.gr (accessed on 28 May 2021)). 

The data used in the analysis were published by EETT. These involve the number of 
active subscriptions per mobile telecommunications service provider from 1998, when the 
first mobile telecommunications networks were deployed in Greece, to 2019. These data 
for the incumbent operator CosmOTE and the total market are presented in Figure 2. 

 
Figure 2. Diffusion of mobile services in Greece. 

It can be seen that the incumbent operator CosmOTE captures about 50% of the entire 
market. The other 50% is split between the other operators, namely, Vodafone and Wind 

3.1. Methodology Application 
3.1.1. Data Validation 

To be able to apply the proposed methodology, the annual log changes of active sub-
scriptions must be normally distributed. The Anderson–Darling normality test was used 
for this purpose. Results are presented in Figure 3. 

As can be seen in Figure 3, both the total market and the incumbent operator Cos-
mOTE annual log changes of their active subscriptions are not normally distributed. Sub-
sequently, they cannot be used with the proposed methodology. This is not the case 
though with Vodafone and Wind, whose data may be used for future demand forecasting 
with the proposed methodology. 
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It can be seen that the incumbent operator CosmOTE captures about 50% of the entire
market. The other 50% is split between the other operators, namely, Vodafone and Wind.

3.1. Methodology Application
3.1.1. Data Validation

To be able to apply the proposed methodology, the annual log changes of active
subscriptions must be normally distributed. The Anderson–Darling normality test was
used for this purpose. Results are presented in Figure 3.
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As can be seen in Figure 3, both the total market and the incumbent operator CosmOTE
annual log changes of their active subscriptions are not normally distributed. Subsequently,
they cannot be used with the proposed methodology. This is not the case though with
Vodafone and Wind, whose data may be used for future demand forecasting with the
proposed methodology.

3.1.2. Best-Fitting S-Curve Model Selection

For the purposes of this study, four S-curve diffusion models were evaluated: The
Logistic, Fisher–Pry, Gompertz and TONIC models. Moreover, the Mean Absolute Percent-
age Error (MAPE) was selected as a forecast accuracy measure and calculated in each case.
MAPE was calculated for all sets of data and the model for which the smallest statistical
error was calculated is consequently considered to be the most appropriate to be used for
forecasting future diffusion of mobile services. The results are presented in Table 1.

Table 1. MAPE estimation.

S-Curve Model Vodafone Wind

Logistic 6.764817 12.0521
Fisher–Pry 6.764812 12.05204
Gompertz 6.863766 11.57264

TONIC 6.77584 11.57277

Based on the data of Table 1, the best-fitting S-curve model for Vodafone is the Fisher–
Pry model, whereas for Wind, the best-fitting S-curve model is Gompertz. Parameter
estimation for the best-fitting models are given in Table 2.

Table 2. Best-fitting S-curve model parameter estimation.

Vodafone—Fisher–Pry Wind—Gompertz

S 3,674,635 S 2,693,731
a 2.339 a −0.706
b 0.647 b 0.432

3.1.3. Stochastic Model Calibration

Following the proposed methodology, the Ito process was calibrated based on the
data provided by the best-fitting S-curve model. The calculated volatility coefficients are
provided in Table 3. For comparison purposes, the equivalent GBM volatility coefficients
are also included in Table 3.

Table 3. Calculated volatility coefficients.

Provider Ito GBM

Vodafone 8.58% 14.59%
Wind 13.53% 19.87%

It can be seen that the calibration of the Ito process provides results in the smaller
volatility coefficient calculation. This is due to the better capturing of the diffusion trend,
provided by the S-curve model.

3.1.4. Forecasting and Risk Valuation

To complete the analysis, Monte Carlo Simulation was deployed to forecast diffusion
for a period of 6 years (up to 2025). Results were compared with the ones provided by
traditional GBM forecasting.

As can be seen in Figure 4, all possible paths provided by the calibrated Ito process
are below the saturation point of the total market. On the contrary, for both operators,
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traditional GBM forecasting provides a significant number of paths that greatly exceed the
total market saturation point. This is due to the constant drift rate and the higher volatility
coefficient assumed by GBM. Consequently, application results validate the enhanced
uncertainty measurement and diffusion forecast hypothesis; the proposed calibrated Ito
process outperforms the traditional GBM forecasting.
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Moreover, the calculated probabilistic distribution constitutes a risk assessment of the
forecasted Vodafone and Wind mobile services diffusion. Therefore, it corresponds to the
overall risk experienced by both providers, which includes both the systematic and the
idiosyncratic risk. Results may help telecommunication operators to adjust their strategy.
Furthermore, provided that the proposed methodology could be applied to total market
diffusion data, the market’s systematic risk could be extracted, thus enabling the estimation
of the operators’ idiosyncratic risk.

4. Conclusions

In this paper, a forecast methodology was suggested for capturing both the dynamism
and stochasticity of future demand for telecommunication services. The proposed method-
ology is based on the calibration of a generalized Brownian motion—Ito stochastic process
for use in telecommunications’ demand modelling.

Under the proposed methodology, the drift coefficient follows the variable diffusion
rate provided by the best-fitting S-shaped diffusion model. Moreover, the volatility param-
eter is defined as the standard deviation of the percentage error. The calibrated Ito forecast
model permits involving possible uncertainty in predicting future demand. The outputs of
the proposed forecast model consist of a probabilistic distribution of future demand that
constitutes a risk assessment of the forecasted diffusion of the telecommunication services
under study.

The performance of the proposed methodology was tested against traditional GBM
forecasting. A result comparison confirmed the enhanced uncertainty measurement and
the capability of the proposed methodology in demand forecasting in the telecommunica-
tions sector.

The proposed methodology contributes well to developing strategic plans in dynamic
and uncertain markets when a robust scenario analysis is required. In addition, it is
compatible with all S-shaped diffusion models. Therefore, it can be applied over all cases
of the high-technology market, where a diffusion model is commonly used for diffusion
modelling and obtaining future demand forecasts.
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