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Abstract: A bootstrap-based hypothesis test of the goodness-of-fit for the marginal distribution of
a time series is presented. Two metrics, the empirical survival Jensen–Shannon divergence (ESJS)
and the Kolmogorov–Smirnov two-sample test statistic (KS2), are compared on four data sets—three
stablecoin time series and a Bitcoin time series. We demonstrate that, after applying first-order dif-
ferencing, all the data sets fit heavy-tailed α-stable distributions with 1<α<2 at the 95% confidence
level. Moreover, ESJS is more powerful than KS2 on these data sets, since the widths of the derived
confidence intervals for KS2 are, proportionately, much larger than those of ESJS.

Keywords: cryptocurrency; Bitcoin; stablecoin; marginal distribution; heavy-tails; stationary process;
stable distribution; goodness-of-fit; survival Jensen–Shannon divergence

1. Introduction

The empirical survival Jensen–Shannon divergence (ESJS) has recently been proposed as a
goodness-of-fit measure of a fitted parametric continuous distribution [1]. However, the im-
portant issue of hypothesis testing whether the output ESJS value is significant was left open.

To alleviate this problem, we propose a hypothesis test based on the parametric boot-
strap [2,3], and evaluate the method on time series data [4,5]. As a proof of concept, we
chose four cryptocurrency time series, three stablecoin [6] data sets, and, for reference, we
employ a fourth, Bitcoin [7], data set. The stablecoins we chose maintain their “stability” by
being pegged to the dollar, and thus one would expect their volatility to be low. Apart from
the general interest in cryptocurrency time series, it has already been shown that Bitcoin
data are heavy-tailed [8]; thus, demonstrating that stablecoins also exhibit heavy tails is
interesting in its own right. One reason to experiment with heavy-tailed distributions, such
as the α-stable distribution [9] (or simply the stable distribution) employed herein, is that
they pose additional problems compared to, say, the normal distribution (in the special case
when α=2) due to their variance being infinite (in the more general case when α<2).

The rest of the paper is organised as follows: In Section 2, we introduce the ESJS and,
for comparison purposes, also bring in the well-known Kolmogorov–Smirnov two-sample
test statistic (KS2) [10] Section 6.3. In Section 3, we present a parametric bootstrap-based
goodness-of-fit hypothesis test. Time series do not necessarily comprise independent and
identically distributed (iid) random variables (as is assumed in, say, [11]), so utilising more
general models, such as autoregressive models (as is assumed in, say, [12]), is more appro-
priate when generating time series bootstrap samples. Here, we assume an autoregressive
process of order one [4,5], abbreviated to AR(1), with α-stable innovations, as in [13,14]. In
Section 4, we introduce the cryptocurrency time series we experiment with, and fit them to a
stable distribution after applying first-order differencing to the raw data, to obtain stationary
processes. In particular, we demonstrate that in this case α<2, that is, they are not normally
distributed. In Section 5, we apply the goodness-of-fit hypothesis test of Section 3 to the
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cryptocurrency time series described in Section 4 and discuss the results. Finally, in Section 6,
we provide our concluding remarks. We note that all computations were carried out using
the Matlab software package.

2. Empirical Survival Jensen–Shannon Divergence

To set the scene, we assume a time series, x= {x1,x2,...,xn}, where xt, for t= 1,2,...,n
is a value indexed by time, t, for example, modelling the movement of a stock price. More
specifically, a time series of n values is a random sample generated by a stochastic process
that forms a sequence of random variables X=X1,X2,...,Xn, where each value xi is a realisa-
tion of the random variable Xi. The stochastic process X may be a sequence of iids, but, more
often than not, a time series exhibits temporal dependencies between its values, which is
more realistic. We will also assume that the time series is stationary [4,5]. This makes sense
in our context, since we are particularly interested in the marginal distribution of x, which
we suppose comes from an underlying parametric continuous distribution D.

The empirical survival function of a value z for the time series x, denoted by Ŝ(x)[z], is
given by

Ŝ(x)[z]=
1
n

n

∑
i=1

I{xi>z}, (1)

where I is the indicator function. In the following, we will let P̂(z)= Ŝ(x)[z] stand for the
empirical survival function Ŝ(x)[z], where the time series x is assumed to be understood
from the context; we will generally be interested in the empirical survival function P̂, which
we suppose arises from the survival function P of the parametric continuous distribution
D, mentioned above.

The empirical survival Jensen–Shannon divergence (ESJS) [1] between two empirical sur-
vival functions, Q̂1 and Q̂2, arising from the survival functions Q1 and Q2, is given by

ESJS(Q̂1,Q̂2)=
1
2

∫ ∞

0
Q̂1(z) log

(
Q̂1(z)
M̂(z

)
+ Q̂2(z) log

(
Q̂2(z)
M̂(z)

)
dz, (2)

where
M̂(z)=

1
2

(
Q̂1(z) + Q̂2(z)

)
.

We note that the ESJS is bounded and can thus be normalised, so it is natural to assume
its values are between 0 and 1; in particular, when Q̂1 = Q̂2 its value is zero. Moreover, its
square root is a metric (cf. [1]).

For completeness, we provide the definition of the Kolmogorov–Smirnov two-sample
test statistic ([10] Section 6.3) between Q̂1 and Q̂2 as above, which is given by

KS2(Q̂1,Q̂2)=max
z
|Q̂1(z)−Q̂2(z)|, (3)

where max is the maximum function, and |v| is the absolute value of a number v. We note
that KS2 is bounded between 0 and 1, and is also a metric.

Now, for a parametric continuous distribution D, we let φ=φ(D,P̂) be the parameters
that are obtained from fitting D to the empirical survival function, P̂. The distribution D may,
in principle, be any continuous distribution, although here we concentrate on the α-stable dis-
tribution, since it allows for the modelling of heavy-tailed data, which poses additional prob-
lems to those of light-tailed data, due to the variance (and possibly the mean) being infinite.
In particular, we have an interest in cryptocurrency data, which is likely to be heavy-tailed [8].

We now let Pφ =Sφ(x) be the survival function of x, for D with parameters φ. Thus, the
empirical survival Jensen–Shannon divergence and the Kolmogorov–Smirnov two-sample
test statistic, between P̂ and Pφ, are given by ESJS(P̂,Pφ) and KS2(P̂,Pφ), respectively. These
values provide us with two measures of goodness-of-fit for how well D, with parameters
φ, is fitted to x (cf. [1]).
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3. A Bootstrap-Based Goodness-of-Fit Hypothesis Test

Our hypothesis test makes use of the parametric bootstrap [2,3]; the pseudocode for the
parametric bootstrap in our context is given in Algorithm 1. It takes as input a time series x,
the distribution D we hypothesise x comes from, and the number of bootstrap samples m; in
the simulations we use the typical value of m=1000 samples [15]. The algorithm outputs two
vectors, BV-ESJS and BV-KS2. The first contains m ESJS values, for i=1,2,...,m, between
the empirical survival function P̂i = Ŝ(Bi) for the ith bootstrap sample, Bi, and the survival
function Pφ = Sφ(x) of x, for D with parameters φ. Correspondingly, the second contains
m KS2 values, for i=1,2,...,m, between P̂i and Pφ. The bootstrap samples are generated by
an AR(1) process with α-stable distribution innovations [14] (see also [13]), which is more
realistic than assuming that the samples are generated from an iid process, as in [11].

Algorithm 1: Parametric-Boostrap(x,D,m).
1. begin
2. Initialise BV-ESJS and BV-KS2 as the vector, 〈0,0,···,0〉, of m zeros;
3. Let n be the number of values in x;
4. Let φ=φ(D,P̂);
5. Let Pφ =Sφ(x);
6. for i=1 to m do
7. Generate a bootstrap sample Bi = x∗i1,x∗i2,...,x∗in,
8. where Bi is generated from an AR(1) process with innovations

derived from D with parameters φ;
9. Let P̂i = Ŝ(Bi);
10. Let BV-ESJS(i)=ESJS(P̂i,Pφ);
11. Let BV-KS2(i)=KS2(P̂i,Pφ);
12. end for
13. return BV-ESJS and BV-KS2 sorted in ascending order.
14. end

As we have assumed that the time series is stationary, the absolute value |ρ| of the
parameter ρ of the AR(1) process generating x should be less than one. For the generation
process, we use an estimate ρ̂ of ρ, and, as we will see in Section 4, |ρ̂|<1 is satisfied for the
data sets we employ, as required. We also add a burn-in period of 100 steps to the AR(1)
process generated, which we found to be sufficient for the data sets we used.

Given the bootstrap vectors, BV-ESJS and BV-KS2, and the output from Algorithm 1,
we can form confidence intervals for ESJS(P̂,Pφ) and KS2(P̂,Pφ), according to the bootstrap
percentile method ([16] Section 3.1.2), which is the simplest way to construct a bootstrap
confidence interval; see [16] for improvements on the percentile method. We assume that
the significance level we are interested in for a hypothesis test is a percentage, and set the
significance level to 5%, which is the value we will use in Section 5.

Subsequently, for a one-sided test, we would exclude the highest 5% values from the
parametric bootstrap vector, say BV, returned from Algorithm 1, and for a two-sided test
we would exclude from BV the lowest 2.5% values and the highest 2.5% values. For both
ESJS and KS2 only a one-sided test makes sense, since both metrics are bounded below by
zero. Therefore, the null hypothesis is that the distribution of P̂ is D, and so we reject the
null hypothesis at the 5% confidence level, if ESJS(P̂,Pφ) or, correspondingly, KS2(P̂,Pφ) is
greater than the upper bound of the constructed confidence interval, depending on which
goodness-of-fit measure we are employing.

4. Cryptocurrencies and Heavy Tails

As a proof of concept, we analysed four time series data sets. These include the
prices of three stablecoins [6]: Tether (https://tether.to, accessed on 1 June 2021), DAI
(https://makerdao.com, accessed on 1 June 2021) and USDC (https://www.centre.io/usdc,
accessed on 1 June 2021), which are all pegged to the dollar. In addition, for comparison pur-
poses, we make use of a fourth time series data set, the price of the archetypal decentralised

https://tether.to
https://makerdao.com
https://www.centre.io/usdc
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cryptocurrency, Bitcoin [7], the price of which has previously been hypothesised to follow
the heavy-tailed stable distribution [8].

In Table 1, we describe the details of the time series data we used for the empirical
validation of the proposed goodness-of-fit method; the data were obtained from Coin Metrics
(https://coinmetrics.io, accessed on 1 June 2021). For the stablecoins, 1 is subtracted from
the daily closing rate, so that its value is positive if above 1, zero if exactly 1, and negative
if below 1. For analysis purposes we applied first-order differencing [4,5] to all the time
series, that is, we computed the difference between consecutive observations, which is useful
for removing trends, transforming the price time series into a return series (in future work
we will also consider analysing the raw data set without differencing; however, since our
main aim is to introduce the hypothesis test, for brevity and clarity of exposition we will not
consider this further analysis here). The time series, after differencing was applied to the
raw data sets, are shown in Figure 1.

Table 1. Description of time series data used for experimentation; #Values is the number of values
in the time series.

Currency #Values From Until Closing Rate

Tether 1264 06 January 2017 15 November 2020 daily

DAI 362 20 November 2019 15 November 2020 daily

USDC 772 28 September 2018 15 November 2020 daily

Bitcoin 8929 01 January 2020 07 January 2021 hourly

Figure 1. The time series of the four cryptocurrencies after differencing was applied to the raw data sets.

The α-stable distribution (or simply the stable distribution) [9] has four parameters: (i)
the characteristic exponent α∈ (0,2]; (ii) the skewness parameter β∈ [−1,1] (when β=0, the
distribution is symmetric); (iii) the scale parameter γ; and (iv) the location parameter δ. It
is heavy-tailed unless α=2, when the stable distribution reduces to the light-tailed normal
distribution with β=0. When α<2, the stable distribution is heavy-tailed, its variance as
well as all its other higher moments are infinite; in the case of α≤1, its mean is also infinite.
In the following we will refer to a distribution as stable when α<2, and normal when α=2.

In Figure 2, we show the histograms of the marginal distributions of the four cryptocur-
rencies overlaid with the curve of the maximum likelihood fit of the normal distribution

https://coinmetrics.io
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to the data. It is visually evident that the normal distribution is not a good fit for these
data sets. Kurtosis of a distribution, in this case the marginal distribution of a time series,
indicates peakedness and tailedness of the data relative to the normal distribution [17] (for
ease of comparison with the kurtosis of the normal distribution, which is 3, we will subtract
3 from the kurtosis, giving the excess kurtosis). In Table 2, we show the excess kurtosis of the
four cryptocurrencies, which provides further evidence that none of them follow a normal
distribution, and are in fact heavy-tailed.

Figure 2. Histograms of the marginal distributions of the four cryptocurrencies, each overlaid with
the curve of the maximum likelihood fit of the normal distribution to the data.

Table 2. Excess kurtosis of the four cryptocurrencies.

Currency Excess Kurtosis

Tether 86.0207

DAI 34.6573

USDC 10.1905

Bitcoin 59.7350

Next, we fitted the stable distribution to the four data sets using the Matlab implemen-
tation provided by [18], which is based on the empirical characteristic function method [19].
The fitted parameters are shown in Table 3, noting that in all cases 1<α<2, implying that
the means of the marginal distributions are finite but their variances are infinite.

Table 3. Parameters from fits of the stable distribution to the data of the four cryptocurrencies.

Fitted Parameters for Stable Distribution

Currency α β γ δ

Tether 1.0111 0.0019 0.0011 0.0001

DAI 1.1953 0.0821 0.0016 0.0003

USDC 1.2259 0.0125 0.0003 0.0000

Bitcoin 1.2261 0.0909 27.9685 7.3644
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5. Application of the Goodness-Of-Fit Hypothesis Test to Cryptocurrencies

We apply the bootstrap goodness-of-fit test presented in Section 3, based on the empiri-
cal survival Jensen–Shannon divergence (ESJS) and Kolmogorov–Smirnov two-sample test
statistic (KS2) metrics, to construct 95% confidence intervals for ESJS(P̂,Pφ) and KS2(P̂,Pφ),
where P̂ is the empirical survival function of the input time series and Pφ is the survival
function of time series x, for D with parameters φ. When running Algorithm 1, we computed
1000 bootstrap samples, that is, we set m = 1000. Moreover, it can be seen in Table 4 that,
for all data sets, the estimate ρ̂ of the AR(1) parameter is less than one in absolute value,
implying that the generated bootstrap time series, Bi, are stationary as required.

Table 4. Estimates ρ̂ of the parameter ρ of the AR(1) process for the four cryptocurrencies, noting
that, when |ρ|<1, the process is stationary.

Currency ρ̂

Tether −0.3604

DAI −0.4045

USDC −0.4948

Bitcoin −0.0504

In Tables 5 and 6, we show the results of the bootstrap hypothesis test when employing
the ESJS and KS2 metrics, respectively. In particular, for all data sets, both metrics are within
the 95% confidence interval, and thus with 95% confidence we cannot reject the null hypothe-
sis that the marginal distribution of the input time series comes from an α-stable distribution.

The bar chart in Figure 3 shows that for all four cryptocurrencies the width of the confi-
dence interval for the KS2 goodness-of-fit measure is, proportionately, much larger than that
of the ESJS goodness-of-fit measure. Statistical tests using measures resulting in smaller
confidence intervals are normally considered to be more powerful as this implies, with high
confidence, that a smaller sample size may be deployed [20].

Finally, to provide contrast to the stable distribution result, we now hypothesise that
the marginal distribution of the time series is actually normal (i.e., α=2). We see in Table 7
that, for all four cryptocurrencies, we reject the null hypothesis that the marginal distribution
is normal, as both the ESJS and KS2 are outside their respective 95% confidence intervals.

Table 5. Parametric bootstrap results for the ESJS hypothesis test assuming the marginal distribution
is stable; LB, UB, CI, Mean and STD stand for lower bound, upper bound, confidence interval, mean
of samples and standard deviation of samples, respectively.

Parametric Bootstrap for ESJS Assuming a Stable Distribution

Currency LB of CI UB of CI Width of CI ESJS Mean STD

Tether 0.0006 0.0232 0.0226 0.0090 0.0198 0.0741

DAI 0.0030 0.0345 0.0315 0.0156 0.0188 0.0096

USDC 0.0013 0.0247 0.0234 0.0119 0.0133 0.0063

Bitcoin 0.0004 0.0066 0.0062 0.0061 0.0036 0.0016
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Table 6. Parametric bootstrap results for the KS2 hypothesis test assuming the marginal distribution
is stable; LB, UB, CI, Mean and STD stand for lower bound, upper bound, confidence interval, mean
of samples and standard deviation of samples, respectively.

Parametric Bootstrap for KS2 Assuming a Stable Distribution

Currency LB of CI UB of CI Width of CI KS2 Mean STD

Tether 0.0014 0.0308 0.0294 0.0139 0.0289 0.0996

DAI 0.0029 0.0532 0.0503 0.0358 0.0299 0.0136

USDC 0.0035 0.0374 0.0339 0.0219 0.0210 0.0093

Bitcoin 0.0008 0.0103 0.0095 0.0088 0.0057 0.0025

Figure 3. How much larger, proportionately, is the width of the KS2 confidence interval compared
to that of the ESJS?

Table 7. Parametric bootstrap results for the ESJS and KS2 hypothesis tests assuming the marginal
distribution of the time series for the four cryptocurrencies is normal; LB and UB stand for lower and
upper bounds of the confidence intervals, respectively, and we abbreviate ESJS to E and KS2 to K.

Parametric Bootstrap Results Assuming a Normal Distribution

Currency LB-E UB-E ESJS LB-K UB-K KS2

Tether 0.0001 0.0132 0.1440 0.0004 0.0182 0.2162

DAI 0.0003 0.0240 0.1160 0.0006 0.0330 0.1665

USDC 0.0002 0.0147 0.0830 0.0002 0.0227 0.1330

Bitcoin 0.0001 0.0067 0.1218 0.0000 0.0085 0.1708

6. Concluding Remarks

We presented a proof of concept of the bootstrap-based goodness-of-fit test on four
cryptocurrency time series, concentrating on the α-stable distribution, which allows for the
modelling of heavy-tailed data. Our results demonstrate that, when first-order differenced,
the marginal distributions of all four time series are all α-stable with α< 2. Moreover, for
both ESJS and KS2, the confidence level of the bootstrap-based test is at the 95% level.
Furthermore, ESJS is more powerful than KS2 on these data sets, since the widths of the
derived confidence intervals for the KS2 measure are, proportionately, much larger than
those for the ESJS measure.
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We emphasise that the proposed goodness-of-fit test may be applied to any marginal
distribution, not just to the heavy-tailed stable distributions. Thus, there is a need to further
establish the validity of the proposed hypothesis test on more data sets and on a variety of
distributions, which may or may not be heavy-tailed. In addition, it would be useful to look
at the assumptions regarding the process underlying the generation of the time series, and
to ascertain how this affects the hypothesis test.
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