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Abstract: Magnetite nanoparticles (MNPs) are a preferable material for different bioassays because of
their quite low toxicity both for cells and for mammals, and they have a big variety of surface func-
tionalization approaches. We have synthesized MNPs via a simple and convenient co-precipitation
method with preliminary filtration of FeCl2 and FeCl3 solution, under argon atmosphere and non-
magnetic stirring. MNPs were citrate-stabilized and then modified stage by stage with tetraethoxysi-
lane (TEOS), (3-Aminopropyl)triethoxysilane (APTES) and acylated with succinic anhydride, result-
ing in carboxylated MNPs. Carboxylated MNPs were covalently bounded with folic acid antibody
(FA-1) via 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). MNP-EDC-FA-1 were passed
through a test-stripe with the line consisting of folic acid–gelatin conjugate. The conjugation of
MNP-EDC-FA-1 with folic acid was observed visually, and the magnetic signal distribution was
scanned through the test-stripe with the magnetic particle quantification technique (MPQ) developed
earlier. Visually, the line with folic acid–gelatin conjugate on the test-stripe turned dark, with color
intensity strongly depending on the MNP-EDC-FA-1 concentration. MPQ has shown that the great
majority of MNP-EDC-FA-1 was bound with the acid–gelatin conjugate. The MPQ technique allowed
quantification down to 5 ng of MNP-EDC-FA-1 in this experiment with MNPs synthesized, with a
strong peak at the acid–conjugate line.

Keywords: Magnetite nanoparticles; folic acid; magnetic chemosensors; antibody conjugation; lateral
flow assay

1. Introduction

Magnetite nanoparticles (MNPs) are a preferable material for different bioassays [1]
because of their relatively low toxicity for both cells [2] and for mammals [3], and they have
a big variety of surface functionalization approaches [4,5]. Superparamagnetic behavior
provides an application of MNPs as magnetic labels for both cells [6] and molecules [7]. A
combination of MNPs optical properties at visible range, coupled with its magnetic proper-
ties, has led to the fundament of a magnetometric lateral flow immunoassay on test-stripes
for rapid and sensitive qualitative and quantitative analysis of different biomolecules, for
which the magnetic particle quantification (MPQ) technique was developed earlier [8,9].
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2. Methods

We have synthesized MNPs via a simple and convenient co-precipitation method
(Figure 1). Briefly, FeCl2 and FeCl3 were dissolved in degassed water in a stoichiometric
rate and filtered in order to exclude hydroxy- and oxychlorides that may act as undesirable
and big crystallization centers due to their low solubility. The synthesis of MNPs was carried
out by adding NaOH in a degassed water solution to the mixture of FeCl2 and FeCl3, and
stirred non-magnetically in order to minimize the formation of non-spherical structures
under an argon atmosphere to prevent the MNPs from oxidation. MNPs were washed
and stabilized with sodium citrate. Citrate-stabilized MNPs (MNP-cit) were modified
stage by stage with tetraethoxysilane (TEOS), (3-Aminopropyl)triethoxysilane (APTES),
resulting in aminated MNPs (MNP-NH2), and acylated with succinic anhydride, resulting
in carboxylated MNPs (MNP-COOH). Carboxylated MNPs were covalently bounded with
a folic acid antibody (FA-1) via 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) by
incubation of carboxylated MNPs with EDC, washing, and then the consequent incubation
with FA-1. MNP-EDC-FA-1 suspension was mixed with albumin buffer solution in order to
block the unreacted EDC and to simulate blood serum media. Porous test-stripes with folic
acid–gelatin conjugates were put into MNP-EDC-FA-1 suspension and left for 15 min. Then,
the test-stripes were scanned with an MPQ-scanner in order to measure their magnetic
signal distribution.
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Figure 1. Synthesis of MNP via co-precipitation method.

3. Results and Discussion

The suspension of synthesized nanoparticles was of a dark, black color. The magnetic
response was strong. XRD (Figure 2) has shown that synthesized nanoparticles consisted
of pure magnetite, with a crystallite size of about 12 nm, according to the Scherrer equation.
Sodium citrate dihydrate peaks were observed on the diffractogram of MNP-cit synthe-
sized in an air atmosphere, which may indicate its excess on the MNP surface due to the
insufficient washing of MNPs. Peaks corresponding to the magnetite are better pronounced
when MNPs are synthesized in an Ar atmosphere.

Hydrodynamic radii (Figure 3) of pristine MNPs agglomerates were about 380 nm
and decreased to 136 nm after modification with sodium citrate. Carboxylation caused no
sufficient resultant change in MNPs agglomerates’ size. ζ-potential changed from neutral
to −48 ± 7 mV after modification with sodium citrate, and alongside a size decrease that
indicated the stabilization of the suspension, resulted in +25 ± 7 mV after amination with
APTES and −25 ± 10 mV after acylation, indicating that carboxylation was successful.

The conjugation of MNP-EDC-FA-1 with folic acid was observed visually, and the
magnetic signal was scanned through the test-stripe by the MPQ-magnetometer (Figure 4).
Visually, the line with folic acid–gelatin conjugate on the test-stripe turned dark, with its
color intensity strongly dependent on the MNP-EDC-FA-1 concentration. MPQ showed
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that the great majority of MNP-EDC-FA-1 was bound with the acid–gelatin conjugate. The
MPQ technique allowed quantification down to 5 ng of MNP-EDC-FA-1 in this experiment
with MNPs synthesized, with strong peak at the acid–gelatin conjugate line.
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4. Conclusions

The synthesis of MNPs in an Ar atmosphere allows the obtaining of MNPs without
any other phases but magnetite. MNPs may serve both as a platform for immobilization of
antibodies and a magnetic label for them. MPQ may be quite a precise tool for detection and
quantitative analysis of MNPs, so the magnetometric lateral flow immunoassay is possible
to be utilized, for example, to quantify the interaction between antibody and antigen.
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