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Abstract: This paper presents the synthesis of fluorescein-modified hydrogel materials. The obtained
materials were characterized using FT-IR spectroscopy. Then, their sorption capacity in distilled
water and Ringer’s liquid was determined. Using digital microscopy, the morphology of the obtained
systems was characterized.
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1. Introduction

Hydrogels, owing to their distinctive physical and chemical properties, have found
extensive applications across diverse industrial domains. The hydrogel properties of ma-
terials depend on the degree and nature of cross-linking and the degree of crystallinity
of the polymer [1,2]. Notably, hydrogels exhibit a pronounced potential for biomedical
applications, such as tissue engineering and drug delivery, which is attributable to their
hydrophilicity, superabsorbent capacity, biodegradability, and biocompatibility. Despite
their hydrophilic nature, these materials are non-soluble in aqueous media. Of significance,
hydrogels display non-toxicity, an absence of tissue damage, and an absence of inflamma-
tory responses or thrombogenicity [3]. Hydrogel materials are commonly composed of
natural polymers like collagen, gelatin, or cellulose, forming three-dimensional networks of
hydrophilic polymer chains capable of absorbing substantial fluids, water, or bodily fluids.
The structure and properties of hydrogel materials can be tailored through the selection of
appropriate biomaterials, cross-linking methodologies, and fabrication techniques [4–6].

Hydrogels, constituted by intelligent polymers, exhibit a sensitivity to alterations
in their external environment. These smart hydrogels contain functional groups that are
formed as a result of non-covalent interactions, such as hydrogen bonds, hydrophobic inter-
actions, or electrostatic interactions. The most common stimuli for hydrogel responsiveness
encompass light, temperature, electromagnetic fields, ultrasound, and chemical factors, e.g.,
pH, as well as biological triggers like antigens or DNA [7,8]. Physical and chemical stimuli
are harnessed to elicit various structural reactions from intelligent polymers. One or more
of these stimuli can induce modifications in diverse properties, including phase transitions,
shape alterations, optical, mechanical, and molecular attributes, surface energy, reaction
rates, and permeability of the polymer system. A notable characteristic of temperature-
sensitive polymers involves the presence of hydrophobic groups such as propyl, ethyl,
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and methyl groups [9,10]. When temperature-sensitive polymers reach the lower critical
solution temperature (LCST), a phase transition is observed within the polymer structure.
pH-responsive polymers represent another pivotal group of intelligent polymers. These
polymers consist of polymer chains with ionic groups that can donate or accept protons
as a result of changes in the pH of the environment. When these materials are exposed
to these factors, properties such as the porosity and hydrophilicity of hydrogels can reg-
ulate the loading and release of drugs in a controlled manner, thereby finding utility in
drug delivery systems [11,12]. In this work, fluorescein-modified hydrogel materials were
obtained, which can be used as various types of sensors in many industries. An example of
unmodified and dye-containing materials is presented in Figure 1.
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2. Materials and Methods
2.1. Materials

The primary reagents employed in this study encompassed poly(vinyl alcohol) (PVA,
in crystalline powder form, hydrolyzed to a degree of 87–89%, with a molecular weight
range of 13,000–23,000), poly(ethylene glycol) (PEG, in powder form, possessing an average
molecular weight of 6000), diacrylate poly(ethylene glycol) (PEGDA, a cross-linking agent,
with an average molecular weight of Mn = 700 g/mol), and 2-hydroxy-2-methylpropiophenone
(a photoinitiator with a purity of 97% and a density d = 1.077 g/mL). Additionally, fluo-
rescein (in the form of the free acid) was procured from Sigma Aldrich (Saint Louis, MO,
USA). All the acquired reagents were of analytical grade purity.

2.2. Synthesis of Hydrogel Materials

The hydrogel materials were obtained through the photopolymerization process. First,
specified amounts of PVP and PVA were mixed. Fluorescein was then added with various
amounts of cross-linking agent. After thorough mixing, a photoinitiator was introduced
into the reaction mixture, which was then placed in a mold for polymerization. The
entire process was carried out at ambient temperature using a 180 W EMITA VP-60 UV
lamp with a wavelength of λ = 320 nm. The duration of the polymerization process for
each material was set to 5 min. After synthesis, the materials were subjected to complex
drying until they reached a solid state. The synthesized materials were then subjected to a
physicochemical characterization including infrared spectroscopy and sorption analysis. In
addition, their surface morphology was evaluated. The composition of the hydrogels is
presented in Table 1.
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Table 1. Composition of the hydrogel materials obtained.

10% PEG,
mL

10% PVA,
mL

Photoinitiator,
mL

Fluorescein,
mL

PEGDA,
mL Sample No.

1.0 9.0

0.05 1

1
3.0 7.0 2
5.0 5.0 3 3
7.0 3.0 4
9.0 1.0 5

2.3. FT-IR Infrared Spectroscopy Analysis

The investigation involving Fourier Transform Infrared (FT-IR) spectroscopy was
executed utilizing the Thermo Scientific Nicolet iS5 spectrophotometer equipped with
an ATR attachment. The spectra were recorded in the range 3600–500 cm−1 (32 scans,
resolution 4.0 cm−1). The measurement was carried out at room temperature.

2.4. Analysis of Sorption Capacity

The sorption capacity of the polymeric materials was evaluated through the determi-
nation of their swelling coefficient. For each distinct material specimen, a circular sample
measuring 1 cm in diameter was meticulously prepared and its initial mass was ascertained.
Subsequently, these samples were introduced into separate volumes of distilled water and
Ringer solution (each maintained in 50 mL of the corresponding liquid). Post a desig-
nated incubation period of 24 h and 48 h, the samples were, once again, weighed, thereby
facilitating the computation of their swelling coefficient using the subsequent formula
(Equation (1)).

α = (mt - m0)/m0 (1)

, where the components are as follows:
α—swelling ratio, in g/g;
mt—mass of swollen sample after time “t”, in g;
m0—mass of dry sample (before the study), in g.

2.5. Microscopic Observations and Roughness Profile

Then, the surface morphology of the obtained materials was determined using an
advanced VKX-7000 Keyence digital microscope. The observations were conducted for all
the received materials at room temperature.

3. Results and Discussion
3.1. FT-IR Infrared Spectroscopy Analysis

A spectroscopic analysis was performed to determine the chemical structure of the
resulting hydrogels. The spectroscopic spectra are presented in Figure 2. All the hydrogel
materials were analyzed. In addition, pure polymeric components such as PVA and PEG
were tested as reference samples.

Based on the analysis, the occurrence of absorption bands characteristic of the poly-
meric components included in the developed hydrogel systems was confirmed. No sig-
nificant differences were noted. All the spectroscopic spectra were similar to each other.
They differed slightly in the intensity of the selected bands depending on the base solution
used (the ratio of PEG to PVA). It was difficult to identify significant differences in the
wavenumber range around 2000 cm−1 to 600 cm−1, because most of the absorption bands
overlapped in this range for both polymers. This is indicated with the red box in Figure 2.
However, we could also indicate the difference between the starting materials, as presented
in Figure 2a,b. In the case of polyethylene glycol, we could distinguish an absorption
band with a maximum around 2870 cm−1 corresponding to the C-H stretching vibrations
of the -CH2 group. In the case of polyvinyl alcohol, on the other hand, a characteristic
vibration of the -OH group was noted, with a maximum of about 3300 cm−1. These bands
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were compared for the samples containing extreme values of both of these components
(sample 1 and 5). This is shown in Figure 2d. Accordingly, for sample 1, containing a
higher proportion of PVA, we observed a high intensity of the band at 3300 cm−1, while,
for sample 5, the intensity of this band decreased. In contrast, the band characteristic of
polyethylene glycol stood out.
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3.2. Analysis of Sorption Capacity

The results of the sorption capacity analysis are presented in Figure 3.
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An analysis of the sorption capacity was carried out to determine whether the obtained
polymeric materials were capable of absorbing water or aqueous solutions. Depending on
their application, hydrogel materials should be characterized by an appropriate degree of
swelling. For example, in biomedical applications, when we care about absorbing wound
exudate, with materials intended as innovative dressings, sorptive capacity is extremely
important. Other properties, on the other hand, will be required of materials intended for
pharmaceutical or cosmetic applications. For engineered materials containing dye as a
marker, the properties mentioned are equally important. During the swelling of hydrogel
material, the polymer network is loosened, and the encapsulated substances can penetrate
the polymer network, respectively, acting as a tracer. For the materials obtained, all of them
showed sorption capacities of about 1.5 g/g in distilled water and 1.3 in Ringer’s liquid.
The highest weight gain was observed within the first hour of analysis. In contact with the
liquid, the hydrogel material swelled, and, with the passage of time, there was a filling of
all the free spaces between the polymer chains, and the swelling coefficients changed only
slightly. The swelling kinetics indicate that the first hour of contact between the material
and the aqueous solution is the most significant. Then, with the passage of time, some
stabilization occurs, and the hydrogel material accepts only insignificant batches of solution.
For all the analyzed materials, smaller values of swelling coefficients were recorded for
Ringer’s fluid than for the distilled water. It is likely that the ions present in this fluid
may cause the occurrence of additional interactions in the polymer network, limiting the
penetration of larger amounts of fluid, which is not the case with distilled water. These
ions may create additional interactions between the polymer chains. When this happens,
the polymer network increases its cross-linked density, and the penetrating liquid that
penetrates the system has limited free spaces between the chains. This results in lower
swelling coefficients. However, despite this phenomenon, the hydrogel materials placed in
Ringer’s liquid also showed satisfactory values of swelling coefficients, testifying to their
sorption capacity.

3.3. Microscopic Observations

The surface morphology of the hydrogel materials is presented in Figure 4.
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Figure 4. Digital microscope images and roughness profile of the hydrogel materials, as follows: 1.0
PEG/9.0 PVA (a); 3.0 PEG/7.0 PVA (b); 5.0 PEG/5.0 PVA (c); 7.0 PEG/3.0 PVA (d); and 9.0 PEG/1.0
PVA (e).
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The obtained materials are characterized by a rough surface structure, which is associ-
ated with the use of a selected amount of cross-linking agent. During polymerization, a
polymer network of a specific packing density is formed, depending on the composition of
the polymer matrix, mainly the cross-linking agent and the photoinitiator. In the case of
all the materials held, a homogeneous surface without discontinuities was found, which
shows the correct polymerization of these systems.

Some differences were also noted between the materials containing different amounts
of selected polymers. It was found that, with an increasing ratio of PEG to PVA, the
roughness and corrugation of the surface increased. Poly(vinyl alcohol) is a polymer
with excellent film-forming properties, so, in the case of the samples containing a higher
amount of it, a smoothing of the surface of the hydrogel material was observed, while,
decreasing its amount in favor of PEG, caused the smoothing to disappear, making the
material rougher. This is valuable information from an application point of view for these
materials. Depending on the specific application, more or less surface roughness may be
desired, which can be controlled and modified accordingly by changing the ratio of PEG to
PVA, the base polymers.

4. Summary

• The selected photopolymerization technique enabled the production of hydrogel
materials that were modified with a fluorescent dye.

• The obtained hydrogels were characterized according to their sorption capacities.
• The spectroscopic characterization showed no significant deviations between the

materials studied.
• All the materials were characterized by a continuous, homogeneous polymerization

surface structure, with an average degree of roughness.
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